2022 Oklahoma Gambling Prevalence Study

Wiley Harwell, D. Min., LPC, ICGC-II
Oklahoma Association for Problem Gambling and Gaming
Executive Director
Keith E. Spare, MS, MDiv, LPC
Kansas City Port Authority Problem Gambling Fund Advisory Committee
Chair
Report Prepared By:
Devin J. Mills, PhD
Uibin Lee, MA
Lauren E. Lewis, MA, LPC
Texas Tech University
Department of Community, Family, and Addiction Sciences

Executive Summary

The landscape of gambling is changing across the US, with a noticeable increase in both sports betting and online gambling. While a 2016 study identified 56.4% of Oklahoma adults engaged in gambling during the previous and that 3.2% met the criteria for gambling disorder (GD), this rapidly changing landscape necessitated an updated study to assess the prevalence of gambling and gambling disorder in Oklahoma. Below is a summary of our findings from a sample of 4,035 adults in Oklahoma.

Gambling Participation:

- 57.9% of Oklahomans partake in some form of gambling each year.
- 20.1% are low-frequency (i.e., less than monthly), 19.0% are moderate frequency (i.e., monthly), and 17.7% are high-frequency (i.e., weekly or more).

Gambling Disorder:

- 6.3% are met criteria for GD, with a further 23.5% At-Risk for GD, implying that around 200,000 Oklahoman adults may have a GD diagnosis, and an additional 700,000 are at risk for GD.
- The prevalence of GD was higher among moderate-frequency (11.0\%) and high-frequency individuals (21.9\%).
- The highest proportions of GD were found among those participating in daily fantasy sports (22.2\%), followed by racetrack betting (19.3\%), stock trading (16.3\%), and slot and video card machines (16.2\%).
- 18.4% of those meeting the criteria for GD had seriously contemplated suicide due to gambling, and 23.2% had attempted suicide.

Helpline and Resources:

- Despite the availability of a helpline, awareness of treatment options for GD remains low, with a small percentage of individuals who gamble, including those at significant risk for GD, utilizing the helpline. Urgent action is required to increase awareness of and access to treatment options to mitigate the escalating social and personal costs of GD in Oklahoma.

2022 Oklahoma Gambling Prevalence Study

Background and Rationale for the Prevalence Study

Gambling is defined as the act of wagering money or something of value on an event with an uncertain outcome, with the primary intent of winning additional money or material goods. It involves an element of risk, as the outcome of the event is uncertain and cannot be predicted with complete accuracy. Gambling takes various forms, including playing casino games (e.g., slot machines, poker, blackjack, roulette), betting on sports, trading high-risk financial assets (e.g., cryptocurrencies, options contracts), and purchasing lottery tickets.

For states and communities, the gambling industry provides various economic benefits. One of the most significant advantages is its contribution to the economy through job creation and tax revenues. In addition, the industry generates substantial tax revenues for federal, state, and local governments, which can be used to fund essential services and infrastructure projects. Tourism is also positively impacted, stimulating the hospitality, entertainment, and retail sectors. Furthermore, the industry supports various charitable causes through initiatives like charitable gambling, which helps raise funds for nonprofit organizations and community projects.

Following the Supreme Court striking down the Professional and Amateur Sports Protection Act (PASPA), the gambling industry and the overall economic impact of gambling are expected to grow substantially over the next decade. For those who gamble, responsible gambling participation can be a fun recreational activity. Many report the thrill and excitement of gambling, as well as the social connections they make through gambling, as primary reasons for playing. Data from the National Council on Problem Gambling shows that 73% of US adults gamble annually, demonstrating the popularity of gambling within the US.

However, gambling is not always engaged responsibly due to many reasons that are often beyond the control of the individual. Consequently, while the economic benefits of the gambling industry are attractive, the continued gambling expansion over the next decade has raised concerns about the potential increase in problem gambling and, more specifically, gambling disorder. As a result, there is a growing need to promote safer gambling practices and increase statewide resources to address the likely increase in the prevalence of gambling disorder. These concerns are particularly relevant to Oklahoma, where a rich gambling culture and mounting legislative pressure to expand gambling exists.

What is Gambling Disorder?

Gambling disorder (GD) is characterized by an inability to control one's gambling behavior, leading to significant negative consequences in various aspects of life. Criteria for GD include a preoccupation with gambling, betting more than one can afford, chasing losses, lying about gambling activities, and conflicts within one's personal and social responsibilities.

Mental health issues (e.g., anxiety, depression, and suicidal thoughts) and substance use problems commonly co-occur with GD. Furthermore, GD can lead to devastating losses, resulting in insurmountable debt, bankruptcy, and the potential loss of assets such as homes and vehicles. These financial issues often
contribute to strained relationships, family breakdowns, and social isolation as trust is eroded and loved ones become alienated. This can further exacerbate existing mental health issues.

Beyond the individuals, GD can also impact communities. In the workplace, GD may contribute to reduced productivity due to individuals being preoccupied with gambling, leading to missed work or a lack of focus. This, in turn, can negatively affect their professional lives and the functioning of the businesses they work for. Additionally, GD is linked to increased crime rates, as some individuals resort to illegal activities such as theft or fraud to finance their gambling habits or cover losses. The costs associated with these crimes and the resources required to address problem gambling place a burden on communities and public services.

Numerous factors contribute to GD, including biological predispositions, personality traits, mental health issues, environmental influences, and social pressures. Exposure to gambling opportunities, aggressive marketing, and glamorizing gambling in popular culture can increase the appeal of gambling and, therefore, increase the potential for problem gambling. Family and peer attitudes, financial stress, and the belief that gambling can quickly solve financial problems also play a role. The interplay of these factors creates a complex web of risk factors, making some individuals more susceptible to problem gambling than others.

The prevalence of problem gambling in the United States varies depending on the study and the specific population examined. Historically, the prevalence of GD has been estimated at around 1-2\% of the U.S. adult population. However, these rates may be underestimated, as recent studies in Illinois and New Jersey found prevalence rates of 3.8% and 6.1%, respectively. ${ }^{1,2}$ Additionally, another $20-25 \%$ of the population could be considered at-risk for GD or at least be experiencing some gambling-related problems without meeting the full criteria for GD (i.e., subclinical problem gambling). Data from the National Council on Problem Gambling (NCPG) found that 31% of U.S. adults endorse at least one GD behavior, suggesting nearly one-third of the U.S. population may be at risk for problem gambling or, at the very least, be experiencing mild to moderate harms from their gambling.

Current State of Gambling in Oklahoma

The 2016 Oklahoma Gambling Prevalence Study shed light on the gambling habits of Oklahoma's adult population, finding that 56.4% of Oklahoma adults had engaged in some form of gambling in the past year. This statistic reflects the widespread popularity of gambling activities within the state. However, the study also identified 3.2% of Oklahoma adults as meeting the criteria for GD, highlighting the need for responsible gambling initiatives as well as GD services, which are partially supported by tribal gaming exclusivity fees.

In fiscal year 2022, the State of Oklahoma collected over $\$ 191.5$ million in tribal gaming exclusivity fees under state-tribal gaming compacts, marking an 18% increase from the previous year. The exclusivity fees are distributed to various funds, including the Education Reform Revolving Fund (received approximately $\$ 168.3$ million; 87.9%), the General Revenue Fund (received approximately $\$ 23$ million; 11.9%), and the ODMHSAS (receives $\$ 250,000$ annually, which was approximately 0.13% of 2022 tribal gaming exclusivity fees). As

[^0]gambling continues to expand, there is a need to discuss the amount provided to ODMHSAS to address mental health initiatives, including the continued issue of GD. As a reference point, the NCPG recommends allocating at least 1% of all gaming revenues towards the following initiatives: (1) Promoting safer gambling practices among youth and adults; (2) Providing training programs for new and existing counselors to enhance their understanding of best practices for treating Gambling Disorder (GD), (3) Increasing awareness of GD through educational campaigns and outreach efforts, and (4) Offering support and treatment services for individuals currently suffering from GD and assisting those in recovery from GD. By allocating these funds, gaming establishments can actively contribute to addressing the challenges associated with problem gambling, ensuring that necessary resources are available for prevention, treatment, and support.

In summary, gambling is a highly popular recreational activity that many adults enjoy. While the gambling industry has notable economic benefits, including job creation, tax revenue generation, and tourism stimulation, there remain many concerns about the societal costs of gambling disorder (GD) within the state, which are likely to rise as gambling continues to expand. These concerns are exacerbated by recent findings from Illinois and New Jersey, where rates of GD are higher than previously estimated. As such, the necessity of a comprehensive prevalence study on gambling within Oklahoma is clearly needed. The objectives and methods for the present study are described in the following section.

Section 1 - Objectives and Methods of the Prevalence Study

Objectives of the Current Prevalence Study

The aim of this prevalence study is to assess the prevalence of both gambling participation and GD among Oklahomans in order to understand the characteristics of individuals who currently engage frequently (i.e., monthly or more) in gambling as well as those who meet the criteria for GD.

Methodology

Elite Research, LLC (ER) was contracted to complete the data collection and initial sample validation. ER is a global research design, program evaluation, and statistical consulting services provider. The company's PhD-level consultants provide research design, survey programming, sampling design, online data collection, statistical analyses, and report writing services. ${ }^{3}$ Based on their assessment and recommendations, a minimum initial sample of 5,000 adults would be required for a final usable sample of 4,100 . A complete overview of the methods used by ER is provided in the appendix. Dr. Devin Mills and his team at Texas Tech University analyzed the data provided by ER but were not involved in development of the survey or the collection of the data. Tables are presented at the end of the document (i.e., page 24) for simplicity.

Final Sample

Survey responses were collected between April 4, 2022, and August 24, 2022. As shown in Table 1.A, 5,698 started the survey. After Elite Research completed its own validation checks, the sample was reduced to 5,578 participants. The research team from Texas Tech University, led by Dr. Devin Mills, completed its own review of the data and identified a further 1,543 participants who submitted incomplete demographics or gambling section, reported high social desirability, or exhibited inconsistent responses with gambling involvement items. Thus, the final sample consisted of 4,035 Oklahoma adults.

Table 1.B presents the demographics of the Raw Data (i.e., sample following Elite Research's validation checks) and Final Sample (i.e., sample following Texas Tech University research team's validation) relative to the desired population statistics. Given some of the unevenness between the population of Oklahoma and those of the Final Sample, a weighting procedure was conducted for Gender, Age, Ethnicity, Racial Background, and County. The result of which is also provided in the final column of Table 1.B. In the end, all key demographics were proportionally represented except for individuals identifying as White, which were overrepresented in the final weighted sample. Although not included in the weighting procedures, Table 1.C provides supplemental demographics for the final weighted sample. Unless otherwise noted, all results will be based on the weighted sample.

Interpreting Statistics within Document

The report will consist largely of percentages and means, with some sections comparing groups (e.g., males vs. females; under 25 years vs. 35-44 years old). Like any other research project, this study cannot provide a perfectly accurate estimation of the population it examines. To overcome this limitation, 95% confidence

[^1]intervals for both percentages and averages are provided throughout this study, which offers a range for the corresponding statistic. An example is provided below.

Findings from the study indicate that 63.9% of male adults in Oklahoma have gambled during the past year, with a confidence interval of 61.8% to 66.0% (see Table 2.A). But what does this range actually signify?

If this study were repeated 100 times using the same methods and a comparable population, we would expect that 95 out of the 100 additional estimations of the proportion of male adults who gamble would fall within 61.8% and 66.0%. In other words, the actual prevalence of male adults in Oklahoma who have gambled during the past year is likely to be somewhere between 61.8% and 66.0% and may not be exactly 63.9%.

Confidence intervals can also be used to compare across groups. For instance, do a greater proportion of adult males gamble than adult females in Oklahoma?

Findings from this study show that 49.9\% of female adults in Oklahoma have gambled in the past year, whereas 63.9% of adult males gamble. But is this difference in percentages statistically significant, indicating that it is likely due to this sex difference (i.e., males vs. females) rather than a random occurrence? The confidence intervals for females with a history of gambling during the previous year are 47.7% to 52.1%, while those for males with a history of gambling during the previous year are 61.8% to 66.0%. Because these ranges do not overlap, we can assume that this difference is due to the underlying group difference (i.e., males vs. females) and not due to random chance.

Finally, the width of the confidence interval is impacted by sample size. Thus, when explored as a whole sample, the range can be quite tight, maybe less than 5% between the lower level and the upper level. However, when the sample is small, the confidence interval will often be wider. For instance, findings from this study show that 63.5% of Native Hawaiian or Pacific Islanders have gambled during the previous year, with a confidence interval ranging from 34.8% to 89.6%. Again, the issue is not the study but the size of the sample for that racial group, which is in line with the population of Oklahoma following the weighting procedure. Thus, notes have been made throughout this report to caution interpretation of any statistics that have a corresponding confidence interval range of 15% or greater.

From Percentages to Population Figures
The current population of Oklahoma is estimated to be 4,019,800, of which 3,051,028 are estimated to be 18 and older. As such, based on the estimated population of Oklahoma adults, every 1% consists of 30,510 individuals. Should the previous prevalence rate of 3.2% be identified, it suggests that about 100,000 Oklahoma adults are suffering from GD.

Section 2 - Gambling and Gambling Disorder among Oklahomans

Section 2 provides an overview of the prevalence of gambling participation and GD among Oklahomans as well as a comparison of both gambling participation and GD across key demographics.

What Proportion of Oklahomans Gamble?

The prevalence of gambling participation among Oklahomans was assessed by asking participants to indicate their involvement in any of the ten gambling-related activities in the past year. Those who reported participating in at least one activity were asked to provide further details about the frequency and intensity of their involvement in each endorsed activity. These categories are described further in Section 3. Table 2.A presents demographics for both groups, with 95% confidence intervals for comparison. Importantly, due to a small sample size, rows that are presented in red font indicate a large confidence interval suggesting the estimate may be less reliable.

According to the study, 57.9% of Oklahomans gamble annually. 63.9% of males reported gambling during the past year, while females were almost evenly divided between individuals with and without a history of gambling during the past year. Analysis of eight age groups revealed that most individuals aged 25-64 have gambled during the past year, while the majority of those aged 85 and above had not gambled. Individuals under 25 years old and those between 75-84 years were almost evenly split between those who had or had not gambled during the previous year. The average age of individuals who had not gambled during the past year was 49.7 years $(S D=19.0)$, significantly higher than the average age of individuals with a history of gambling during the previous year, which was 47.3 years ($S D=16.8$).

The study also found differences in gambling participation among individuals of different ethnic and racial backgrounds. Among those not of Hispanic, Latino, or Spanish origin, 61.0% gambled during the past year, while only 23.2% of individuals of Hispanic, Latino, or Spanish origin had gambled. A majority of individuals who identified as White/Caucasian, American Indian or Native Alaskan, Native Hawaiian or Pacific Islander, or two or more races gambled during the previous year, whereas Black or African American, Asian, and individuals identifying as another race were almost evenly divided between those who had or had not gambled during the previous year.

Most non-college graduates (57.5\%) and college graduates or higher (56.0%) had gambled in the past year, as well as most unemployed individuals (64.0%). Those earning less than $\$ 24,999$ were nearly evenly split between those who had or had not gambled during the previous year. However, most individuals earning between $\$ 25,000-\$ 49,999(55.2 \%), \$ 50,000-\$ 99,999(60.8 \%)$, and $\$ 100,000$ or more (63.5%) were those who had gambled during the previous year.

Lastly, the study compared gambling participation among individuals with and without a history of Military Service (Active Duty or Veteran), revealing that a slight majority of each group were individuals with a history of gambling.

What is the Prevalence of Gambling Disorder among Oklahomans?

Gambling disorder (GD) is defined as a persistent pattern of gambling that directly contributes to significant psychological and social impairments. It is distinguished by nine criteria outlined in the fifth edition of the Diagnostic and Statistical Manual (DSM-5), which include: (1) Needing to gamble with increasing amounts of money to achieve the desired level of excitement; (2) Restlessness or irritability when attempting to cut down or stop gambling; (3) Repeated unsuccessful efforts to control, cut back on or stop gambling; (4) Preoccupation with gambling, such as constantly thinking about past gambling experiences or planning future ones; (5) Gambling as a way to escape from problems or relieve feelings of helplessness, guilt, anxiety, or depression; (6) After losing money gambling, returning another day to get even (chasing one's losses); (7) Lying to conceal the extent of one's involvement with gambling; (8) Jeopardizing or losing important relationships, jobs, or opportunities because of gambling; (9) Relying on others to bail oneself out of a desperate financial situation caused by gambling. Within a clinical interview, individuals who endorse four or more of these criteria meet the diagnoseable threshold for GD. However, within the present study, we assessed problematic gambling behaviors through self-reports. These questions are presented in Section 4 of this report. Research has generally found self-report measures, including the one used in this study, to have strong validity in assessing individuals' overall risk for gambling disorder. Nonetheless, these scores are not a formal diagnosis of GD, even if they are highly predictive of such a diagnosis.

Consistent with the DSM-5 classification procedures, individuals were grouped across three GD classifications gambling groups: (1) No Criteria (0 criteria endorsed), (2) At-Risk ($1-3$ criteria endorsed), and (3) Gambling Disorder (4+ criteria endorsed). Those who did not gamble during the previous year formed a fourth Non-Gambling group, which was also included for further comparisons. The overall prevalence of GD within Oklahoma is $6.3 \% ~(95 \% \mathrm{Cl}: 5.6 \%$ to 7.0%), with a further $23.5 \%(95 \% \mathrm{Cl}: 22.2 \%$ to 24.8%) At-Risk for GD. To put into population figures, this indicates that within Oklahoma, around 200,000 are probable for GD, and 720,00 are at risk for GD. Thus, $29.8 \%(95 \% \mathrm{Cl}: 28.4 \%$ to 31.2%) or nearly 1 million Oklahoma adults are either At-Risk for GD or are currently probable for a GD diagnosis.

We further explore the prevalence of at-risk and GD across various demographics, which are present in Table 2.B with the 95% confidence intervals. Key findings are summarized below.

The data reveals that among male participants, 28.2% are categorized as At-Risk, while 6.8% are GD. Conversely, female participants have a lower percentage in both categories, with 18.8\% At-Risk and 5.7\% GD. Furthermore, among those under $25,27.2 \%$ are At-Risk, and 5.7% are GD. For individuals aged $25-34$, 29.4% are At-Risk, and 6.8% are GD. The highest prevalence of At-Risk and GD is among the 35-44 age group, with 30.1% being At-Risk and 11.4% being GD. Starting with the $55-64$ age group and older, the prevalence of At-Risk and GD decreases significantly.

Differences were also found among individuals of various ethnic and racial backgrounds. First, among those not of Hispanic, Latino, or Spanish Origin, 24.9% are At-Risk, and 6.7% are GD. In contrast, those of Hispanic, Latino, or Spanish Origin have a considerably lower percentage of At-Risk (12.1\%) and GD (2.7\%). Second, percentages of At-Risk and GD differ across different racial demographics revealing the highest prevalence among Black or African American (At-Risk: 28.8\%; GD: 7.1\%) and Asian (GD: 10.2\%) individuals.

Regarding education, employment, and income levels, college graduates show lower percentages of At-Risk (21.2%) and GD (4.8\%) than those who did not graduate college (25.3% At-Risk and 7.4% GD). Employed individuals exhibit higher percentages of At-Risk (25.9\%) and GD (8.2\%) than those who are not employed (20.7% At-Risk and $3.9 \% \mathrm{GD}$). About a quarter of individuals earning less than $\$ 24,999$, between $\$ 25,000-$ $\$ 49,999$, or $\$ 100,000$ or more are classified as At-Risk, whereas 20.4% of those earning between $\$ 50,000-$ $\$ 99,999$ were At-Risk. Although not statistically significant, more than 7% of those in the two lower-income brackets were classified as GD, whereas 5.1% of those earning between $\$ 50,000-\$ 99,999$ and 6.5% of those earning $\$ 100,000$ or more were classified as GD.

The proportion of At-Risk was low for those earning $\$ 50,000$ to $\$ 99,999$ (20.4\%) relative to the other income brackets, which ranged from 24.7% to 25.2%. Similarly, a lower percentage of those earning $\$ 50,000$ to $\$ 99,999(5.1 \%)$ met the criteria for GD, whereas the other income bracket ranged from 6.5% to 7.3% with GD.

Lastly, individuals with military service have a lower percentage of At-Risk (16.2\%) but a higher percentage of GD (9.8%) compared to those with no military service (24.3% At-Risk and 5.9% GD).

Summary

The present findings indicate that 57.9% of Oklahoman adults gambled in the past year, with a greater proportion of males, college graduates, those earning more than $\$ 100,000$, or active military or veterans being more likely to have gambled in the previous year. The average age of those who did not gamble last year was higher at 49.7 years compared to those who did gamble at 47.3 years, suggesting gambling may be more appealing among younger individuals. The study also found that 6.3% of participants were GD, and an additional 23.5% were At-Risk. Males, those aged 35-44, and non-Hispanic participants had higher rates of GD. College graduates and employed individuals had lower rates of GD, while the lowest income bracket had the highest rate. Individuals with military service also had higher rates of GD. Of note, the overall proportion of individuals who are either At-Risk or GD is consistent with a national estimate by the National Council on Problem Gambling of 31%. Nonetheless, the prevalence of GD is about $3 x$ the national estimate of 2% and nearly $2 x$ the estimate of 3.2% from a 2016 prevalence study of Oklahoman adults. Thus, the trend appears to point toward an increase in the prevalence of GD within Oklahoma.

Section 3 - Comparison of Gambling Frequency Categories

After indicating which of the ten gambling activities they had played during the past year, participants were asked to indicate the frequency they engaged in each activity on a 7-point Likert scale ranging from (1) 1 to 5 times during the last year, (2) 6 to 11 times during the last year, (3) About once a month, (4) 2-3 times a month, (5) About once a week, (6) 2-6 times per week, and (7) Daily. For simplicity, a general gambling frequency variable was created by taking the maximum frequency reported across all ten gambling activities for each participant. Subsequently, the general gambling frequency variable was used to categorize individuals who gambled in the previous year into one of three frequency categories: (1) Low Frequency (i.e., less than monthly), (2) Moderate Frequency (i.e., monthly), and (3) High Frequency (i.e., weekly or greater). Among Oklahomans, 20.1% ($95 \% \mathrm{Cl}$: 19.1% to 21.6%) are Low Frequency, $19.0 \% ~(95 \% \mathrm{Cl}$: 18.0% to 20.4%) are Moderate Frequency, and 17.7% ($95 \% \mathrm{Cl}$: 16.8% to 19.1%) are High Frequency. These percentages account for the 42.1% of Oklahomans who did not gamble during the previous year.

After excluding those who did not gamble during the previous year, comparisons were made to assess differences among those who gambled during the previous year across the three gambling frequency categories, including demographics (see Table 3.A), gambling activities (see Table 3.B), and gambling motivations (Table 3.C). Key takeaways for each category of gambling frequency are summarized below. Of note, those who gambled rated each gambling motivation on a 6-point scale ranging from (1) low importance to (6) high importance. As such, higher scores are interpreted as stronger motivations.

Who are the High-Frequency Individuals?

High-Frequency individuals, defined as those who engage in gambling activities weekly or more, display varying percentages across different demographic groups (see Table 3.A). Examining gender, 30.3% of males and 32.4% of females are considered high-frequency gamblers. Age also plays a significant role, with 29.0% of individuals under 25 engaging in high-frequency gambling and only 14.8% of those aged 85 and over. The prevalence tends to decrease as age increases, except for the $35-44$ age group, which has the highest percentage at 37.6%.

Regarding ethnicity, 31.0% of non-Hispanic, Latino, or Spanish-origin individuals participate in highfrequency gambling, compared to 36.0% of those who identify as such. Among various racial backgrounds, Asians show the highest percentage at 42.3%, while Native Hawaiian or Pacific Islanders and those who identify as "Other" racial backgrounds exhibited the lowest at 11.8% and 7.6%, respectively. Education level displays a slight difference, with 32.2% of those without a college degree engaging in high-frequency gambling, compared to 30.0% of degree holders.
Employment status impacts gambling behavior, with 34.0% of employed individuals considered highfrequency gamblers, as opposed to 26.5% of those not employed. Income level reveals a relatively even distribution, ranging from 29.5% for those earning less than $\$ 24,999$ to 32.7% for those earning $\$ 100,000$ or more. Military service also plays a role, with 37.0% of active duty or veteran individuals classified as highfrequency gamblers, compared to 30.6% of those without military service.

As noted in Table 3.B, High-Frequency individuals are highly engaged in daily fantasy sports (75.4\%), league or season fantasy sports (49.7\%), casino table or dice games (48.2\%), and bingo or keno (48.1\%). Other popular activities include lottery or scratch tickets (38.5\%), slot or video card machines (37.3\%), and stock trading (52.0\%).

Finally, as presented in Table 3.C, entertainment motives were the strongest motivation for High-Frequency individuals. However, when compared to the other two categories, High-Frequency individuals reported stronger financial motivations $(M=3.87$; $S D=1.70)$, excitement motivations ($M=3.40$; $S D=1.51$), and coping or escape motivations ($M=2.78$; $S D=1.64$). Because entertainment motives were high across all frequencies, this motivation does not discriminate coping or escape High-Frequency individuals from the other two categories. Thus, it appears that for High-Frequency individuals the driving motivations are financial, excitement, and coping and escape.

Who are the Moderate Frequency Individuals?

Moderate Frequency individuals, defined as those who participate in gambling activities on a monthly basis, show diverse percentages across different demographic groups (see Table 3.A). In terms of gender, 32.4\% of males and 34.6% of females engage in moderate-frequency gambling. Age influences participation, with percentages ranging from 36.6% for those under 25 to 57.3% for individuals aged 85 and over. The highest percentage is seen in the 85 years and over the group, while the lowest is observed in the $45-54$ years old group at 30.4%.

For ethnicity, 33.4% of non-Hispanic, Latino, or Spanish-origin individuals engage in moderate-frequency gambling, as opposed to 33.6% of those who do. Examining racial backgrounds, Native Hawaiian or Pacific Islanders have the highest percentage at 69.9%, while the Black or African American group has the lowest at 30.8%. A minor difference is observed between education levels, with 34.5% of those without a college degree participating in moderate-frequency gambling compared to 31.9% of degree holders.

Employment status impacts gambling behavior, with 36.7% of non-employed individuals being moderatefrequency gamblers, as opposed to 31.5% of employed individuals. Income level reveals a decline in moderate gambling participation as income increases, with 41.1% for those earning less than $\$ 24,999$ and 26.0% for those earning $\$ 100,000$ or more. Military service is also a factor, with 34.0% of individuals without military service engaging in moderate-frequency gambling, compared to 27.6% of active duty or veteran individuals.

As noted in Table 3.B, Moderate Frequency individuals are most drawn to lottery or scratch tickets (36.4\%), slot or video card machines (34.8\%), and bingo or keno (32.3\%). Other activities in this group include stock trading (32.2%), racetrack betting (33.5%), casino table or dice games (28.8%), and betting on sports, exclusive of league fantasy and daily fantasy sports (28.9\%).

Finally, as presented in Table 3.C, entertainment is the primary driver for Moderate Frequency individuals, with a mean score of $4.01(\mathrm{SD}=1.54)$. Financial motivation comes in a close second with a mean of 3.53 ($S D=1.60$). Excitement is also a notable motivation, with a mean of $3.07(S D=1.47$).

Who are the Low-Frequency Individuals?

Low-Frequency individuals, defined as those who participate in gambling activities less than once a month, demonstrate diverse percentages across different demographic groups (see Table 3.A). Regarding gender, 37.3% of males and 33.0% of females engage in low-frequency gambling. Age plays a role, with percentages spanning from 34.5% for individuals under 25 years old to 27.9% for those aged 85 and over. The highest percentage is observed in the 55-64 age group (46.0%), while the lowest is in the 35-44 age group (29.3\%).

When considering ethnicity, 35.6% of individuals not identifying as Hispanic, Latino, or Spanish origin partake in low-frequency gambling, compared to 30.4% who do identify as such. Examining racial backgrounds, the Asian group has the lowest percentage at 16.7%, while the White or Caucasian and Black or African American groups have the highest at 36.4% and 36.3%, respectively. A difference is observed between education levels, with 33.3% of those without a college degree and 38.0% of degree holders participating in low-frequency gambling.

Employment status also influences gambling behavior, with 36.9% of non-employed individuals being lowfrequency gamblers compared to 34.5% of employed individuals. Income level shows an increase in lowfrequency gambling participation as income rises, from 29.4\% for those earning less than \$24,999 to 41.3\% for those earning $\$ 100,000$ or more. Military service seems to have no significant impact on the prevalence of low-frequency gambling, with 35.4% of individuals without military service and 35.4% of active duty or veteran individuals participating in such gambling activities.

As noted in Table 3.B, Low-Frequency individuals primarily participate in raffles, office pools, skill bets, or card games with friends, with 31.5% engaging in these activities. They also play slot or video card machines (27.9%) and buy lottery or scratch tickets (25.1%). Less popular activities among this group include betting on racetracks (26.2%), casino table or dice games (22.9\%), and league or season fantasy sports (22.4\%).

Finally, as presented in Table 3.C, Low-Frequency individuals, the primary motivation appears to be entertainment, with a mean score of $4.12(S D=1.52)$, suggesting that these individuals engage in gambling primarily for fun and enjoyment. Financial motivation comes in second with a mean of 3.23 ($\mathrm{SD}=1.69$), indicating the desire to win money as another significant factor. Socialization and excitement also rank relatively high, with similar mean scores of $2.89(S D=1.66)$ and $2.86(S D=1.40)$, respectively.

Summary

In conclusion, the findings presented in this section highlight the varying demographics, gambling activities, and motivations of individuals who gambled during the previous year across three gambling frequency categories: low, moderate, and high frequency. Key differences among these groups include the influence of age, gender, ethnicity, income, and military service on gambling participation. Furthermore, motivations for gambling vary across frequency categories, with entertainment being a primary driver for Low and Moderate Frequency individuals and financial motivations being the most prominent for High-Frequency individuals. By understanding these differences, interventions and support services can be tailored to address the unique needs and characteristics of each group, ultimately promoting responsible gambling behavior and mitigating gambling-related harms.

Section 4 - Comparison of Gambling Disorder Classifications

Gambling disorder is characterized by a persistent pattern of gambling behaviors that directly contribute to significant psychological and social impairments. In this study, we assess GD behaviors through self-reports, which have strong validity in evaluating individuals' overall risk for GD. Based on the DSM-5 classification procedures, individuals who gambled in the previous year were categorized into three groups, which was described in Section 2 of this report and is not repeated here. Note that the present section does not include data for Non-Gambling individuals and only focuses on comparisons across GD classifications among those who gambled in the previous year.

As such, the aim of this section is to provide a greater understanding of the characteristics associated with GD that extends beyond those demographic differences that were discussed in Section 2. The present section begins with an overview of the self-report questions that directly assess each criterion of GD and the proportion of individuals endorsing each question (see Table 4.A). Additionally, gambling activities (see Table 4.B), gambling frequency categories (see Table 4.C), gambling motivations (see Table 4.D), and maladaptive gambling beliefs (see Table 4.E) are explored across the three GD classifications. Finally, as evidence of potential harm from GD, the proportion of individuals reporting suicidal thoughts or suicide attempts due to gambling is explored across the three GD classifications (Table 4.F).

Endorsement of GD Criteria Questions

Questions assessing each of the GD criteria are presented in Table 4.A along with the proportion of individuals that endorsed each one. Criterion 8 was the most endorsed criterion due to the high prevalence of individuals experiencing serious interpersonal problems (Criteria 8a). The average number of criteria endorsed by individuals who gambled was 1.27 ($\mathrm{SD}=1.85$). Additionally, nearly a quarter of those gambling have attempted to cut down or stop their gambling (Criterion 3a), but only two-thirds were successful. Additionally, 16.4\% have returned to the casino to win back their losses (i.e., chasing; Criteria 6), which often places individuals at heightened risk for experiencing even larger losses and greater psychological costs.

Gambling Activities

The proportion of individuals based on gambling activity is explored across the three GD classifications in Table 4.B. Focusing on At-Risk, the proportion varies across different gambling activities, with League (or Season) Fantasy Sports having the highest proportion of At-Risk (47.3\%), followed by Slot or Video Card Machines (44.4\%), and Raffles, Office Pools, Skill Bets, or Cards with Friends (44.8\%). Other activities with notable proportions of At-Risk include Stock Trading (43.0\%), Daily Fantasy Sports (42.9\%), and Bingo or Keno (42.6\%). Casino Table or Dice Games (39.7\%), Racetracks (41.5\%), and Lottery or Scratch Tickets (39.3%) also have a significant presence of At-Risk. Sports (excluding League Fantasy and Daily Fantasy Sports) have the lowest proportion of At-Risk (32.9\%).

The proportion of GD also varied across gambling activities. Daily Fantasy Sports show the highest proportion of GD (22.2\%), followed by Racetracks (19.3\%) and Stock Trading (16.3\%). Slot or Video Card Machines (16.2\%), Casino Table or Dice Games (15.1\%), League (or Season) Fantasy (14.3\%), and Bingo or Keno (14.5%) also have considerable proportions of GD. Lower proportions of GD can be found in Lottery or

Scratch Tickets (12.3\%), Sports (excluding League and Daily Fantasy Sports) (11.4\%), and Raffles, Office Pools, Skill Bets, or Cards with Friends (9.5\%). However, as shown in Table 4.B, it is the contrast in proportions that is of particular interest. For instance, while 16.2% of those playing Slot or Video Card Machines were GD, only 3.7% of those not playing Slot or Video Card Machines were. As such, there do appear to be some gambling activities that place individuals are greater risk for GD than others.

Gambling Frequency

The data reveals a clear correlation between gambling frequency and the prevalence of GD (see Table 4.C). Among Low Frequency, At-Risk comprises 31.9% of the group, while only 1.4% are classified as GD. In contrast, among Moderate Frequency, the proportion of At-Risk rises to 46.7%, with GD accounting for 11.0% of the group. Most notably, High Frequency has the highest proportion of GD at 21.9\%, accompanied by 43.5% At-Risk. This correlation emphasizes the need for targeted interventions and policies to address problem gambling, particularly among High Frequency.

Gambling Motivations

Gambling motives across the GD classes are provided in Table 4.D. For At-Risk, the primary motivations include entertainment ($\mathrm{M}=3.62, \mathrm{SD}=1.47$), excitement ($\mathrm{M}=2.79, \mathrm{SD}=1.43$), and financial reasons ($\mathrm{M}=3.11$, $S D=1.63$), followed by socialization ($M=2.42, S D=1.41$), and charitable reasons $(M=2.34, S D=1.35)$. Their least prominent motivation is coping or escape ($\mathrm{M}=2.27, \mathrm{SD}=1.43$). In contrast, GD is linked with a stronger motivation for coping or escape ($\mathrm{M}=3.50, \mathrm{SD}=1.63$). GD is also associated with stronger motivations to gamble for financial reasons ($M=4.21, S D=1.60$), entertainment $(M=3.82, S D=1.49)$, excitement ($M=3.59$, $S D=1.51$), socialization ($M=2.61, S D=1.45$), and charitable reasons $(M=2.54, S D=1.39)$.

Maladaptive Beliefs

Maladaptive beliefs about gambling are common and place individuals at risk for GD. Two maladaptive beliefs were assessed within the present study via two Yes/No questions. First, individuals were asked, After losing many times in a row, are you more likely to win? which broadly assesses the gambler's fallacy. This maladaptive belief is that the outcomes of a game of chance are affected by previous outcomes or events and that the likelihood of a particular outcome is increased or decreased based on previous outcomes. Second, individuals were asked, Can you win more if you use a certain system or strategy? which broadly assesses a maladaptive belief that one has a specific system or strategy that can guarantee a win. Individuals were grouped into one of four groups: (1) No maladaptive beliefs endorsed (75.4\%), (2) Only the Gambler's Fallacy belief endorsed (5.8\%), (3) Only the Systems or Strategies belief endorsed (10.4\%), and (4) Both maladaptive beliefs endorsed (6.4\%).

As shown in Table 4.E, there is a clear relation between endorsing one, and especially both, maladaptive beliefs. Specifically, as a reference, only 5.3% of individuals who did not endorse any maladaptive beliefs were GD compared to 22.7% of those endorsing Systems or Strategies Belief, 24.5% of those endorsing the Gambler's Fallacy, and 48.5% of those endorsing both maladaptive beliefs.

Risk for Suicide Ideation or Attempts due to Gambling

Table 4.F presents percentages of individuals reporting suicidal thoughts and suicide attempts due to gambling across GD classes. A clear correlation is revealed in which a greater percentage of those endorse suicidal thoughts and suicide attempts due to gambling as the severity of GD increases. Among No Criteria individuals, only 0.3% had seriously considered committing suicide due to gambling, and 0.4% had attempted suicide. Among At-Risk, 1.6% had seriously considered committing suicide, and 2.5% had attempted suicide due to gambling. Finally, of those meeting criteria for GD, 18.4% had seriously thought about committing suicide due to gambling, and 23.2% had attempted suicide.

Summary

Findings presented in this section revealed interesting characteristics of individuals who gambled during the previous year across three GD classes. Specifically, among various gambling activities, the highest proportion Of At-Risk participate in League Fantasy Sports, Slot or Video Card Machines, and social games like Raffles, Office Pools, Skill Bets, or Cards with Friends. Daily Fantasy Sports, Racetracks, and Stock Trading have the highest proportions of GD. A clear correlation exists between gambling frequency and the prevalence of GD behaviors, with High-Frequency individuals exhibiting the highest risk. Of At-Risk are primarily motivated by entertainment, excitement, and financial reasons, while GD displays a stronger motivation for coping or escape. Maladaptive beliefs are prevalent and significantly related to GD. Endorsing both Gambler's Fallacy and belief in Systems or Strategies beliefs is associated with a higher proportion of GD. Suicide ideation and attempts due to gambling are particularly high among GD, emphasizing the need for targeted interventions and policies to address GD.

Section 5 - Awareness of Gambling Resources

This section examines the awareness and utilization of problem gambling resources in Oklahoma among various demographic groups. These resources include the Gambling Helpline, gambling treatment options, and Gamblers' Anonymous Meetings. The data presented highlight differences in awareness and usage based on gender, age, ethnicity, education level, and income. This analysis aims to identify gaps in awareness and access to resources that can inform targeted outreach and support efforts for those affected by problem gambling. The findings are presented in Table 5.A (Demographics of Those Aware of Gambling Resources), Table 5.B (Demographics of Those Utilizing the Gambling Helpline), Table 5.C (Awareness of Gambling Resources by GD Classes), and Table 5.D (Proportion Utilizing the Helpline by Gambling Disorder Classes). Key findings are summarized below.

Which individuals are aware of the Gambling Helpline in Oklahoma?

Among all those who gambled last year, 69.4% are aware of the Gambling Helpline in Oklahoma, indicating that nearly one-third are unaware of this resource. Table 5.A presents the demographics of those who are aware of the Gambling Helpline. Among males, 27.8% were unaware of helplines, while 72.2% were aware (see). For females, 28.5% were unaware, and 71.5% were aware. Helpline awareness tends to decline with age, being highest among those under 25 years (71.1%) and lowest among those 85 years and older, of which none indicated they were aware of the helpline.

For those not of Hispanic, Latino, or Spanish origin, 27.5% were unaware of helplines, and 72.5% were aware. Among those identifying as Hispanic, Latino, or Spanish origin, 40.0% were unaware, and 60.0% were aware. Regarding racial background, Black or African Americans had the highest helpline awareness (80.1%), while Asians had the lowest (60.8%).

When considering education level, those without college degrees had slightly lower helpline awareness (72.9%) compared to college graduates (70.6%). Those employed exhibited higher awareness (74.8%) than those not employed (67.2\%). Those earning under \$24,999 per year demonstrated lower awareness (67.3\%) compared to those earning $\$ 100,000$ or more (81.3%). Lastly, both those with and without military service exhibited similar awareness of gambling helplines, with 72.8% and 71.8% being aware, respectively.

Which individuals are aware of the Gambling Treatment Options in Oklahoma?

Among all individuals who gambled in the past year, 24.8\% are aware of the Gambling Helpline in Oklahoma, indicating that three-fourths are unaware of this resource. Table 5.A presents the demographics of those who are aware of the Gambling Treatment Options. Among males, 78.8% were unaware of treatment options, while 21.2% were aware. For females, 68.4% were unaware, and 31.6% were aware. Treatment option awareness peaks among those between $35-44$ years (31.0\%), with those under 25 years (22.3%) and between 75-84 years (17.4\%) reporting the lowest percentages.

For those not of Hispanic, Latino, or Spanish origin, 73.9% were unaware of treatment options, and 26.1\% were aware. Among those identifying as Hispanic, Latino, or Spanish origin, 81.4\% were unaware, and 18.6\%
were aware. Regarding racial background, those identifying as American Indian or Native Alaskan had the highest treatment option awareness (31.0\%), while those identifying as Asian had the lowest (11.7\%).

When considering education level, treatment option awareness was similar for those without college degrees (25.7%) and college graduates (25.8%). Those employed exhibited higher awareness (29.4\%) than those not employed (19.3\%). Those earning under $\$ 24,999$ per year demonstrated lower awareness (25.0\%) compared to those earning $\$ 100,000$ or more (25.6%). Lastly, those with military service exhibited higher treatment option awareness (35.4\%) compared to those without military service (24.7\%).

Which individuals are aware of the Gamblers' Anonymous Meetings in Oklahoma?

Among all individuals who gambled in the past year, 34.2% are aware of the Gamblers' Anonymous meetings in Oklahoma, indicating that nearly two-thirds are unaware of this resource. Table 5.A presents the demographics of those who are aware of the Gamblers' Anonymous meetings. Among males, 66.7% were unaware of these meetings, while 33.3% were aware. For females, 61.5% were unaware, and 38.5% were aware. Meeting awareness peaks among those under 25 years (39.5%) and those between $35-44$ years (40.2%), with those between 65-74 years (32.2%) and between $75-84$ years ($28.3 \% \%$) reporting the lowest percentages.

For those not of Hispanic, Latino, or Spanish origin, 64.1% were unaware of Gamblers' Anonymous meetings, and 35.9% were aware. Among those identifying as Hispanic, Latino, or Spanish origin, 71.1% were unaware, and 28.9% were aware. Regarding racial background, those identifying as two or more races had the highest meeting awareness (39.0\%), while those identifying as Asian had the lowest (18.2\%).

When considering education level, those without college degrees had slightly lower Gamblers' Anonymous meeting awareness (36.3\%) compared to college graduates (34.6\%). Those employed exhibited higher awareness (38.1%) than those not employed (31.3%). Those earning under $\$ 24,999$ per year demonstrated similar awareness (38.0%) compared to those earning $\$ 100,000$ or more (38.1%). Lastly, those with military service exhibited higher meeting awareness (42.6%) compared to those without military service (34.8\%).

Which individuals utilize the Helpline in Oklahoma?

As shown in Table 5.B, the present data on awareness and usage of the helpline reveals that 81.5% of males and 82.5% of females have never called the helpline. In contrast, 18.5% of males and 17.5% of females have called it. The propensity to call the helpline generally declines with age, peaking among those under 25 years old (27.7\%) and reaching its lowest point among those aged 75-84 (10.3\%).

Those who are not of Hispanic, Latino, or Spanish origin exhibit slightly higher helpline usage (18.1\%) compared to those of Hispanic, Latino, or Spanish origin (17.0\%). Those identifying as two or more races have the highest rate of calling the helpline (24.0%), while those identifying as Asian have the lowest rate (5.2%). Education level does not significantly impact the likelihood of calling the helpline, with both noncollege graduates (18.0%) and college graduates (18.2%) showing similar rates.

Those employed are more likely to call the helpline (19.7\%) than those unemployed (15.1\%). Those earning less than $\$ 24,999$ per year have a slightly lower likelihood of calling the helpline (20.3\%) compared to those
earning $\$ 100,000$ or more (20.8\%). Lastly, those with military service have a higher likelihood of calling the helpline (25.5%) compared to those without military service (17.2\%).

Does awareness of Helplines, Treatment Options, or Gamblers' Anonymous Meetings in Oklahoma vary across GD Classifications?

As shown in Table 5.C, for awareness of helplines, 61.9% of those in the No Criteria classification, 83.5% of those in the At-Risk classification, and 70.1\% of those in the GD classification were aware of the resources. In terms of awareness of Gambling Treatment Options, 33.7\% of those in the No Criteria classification, 15.0\% of those in the At-Risk classification, and 33.0% of those in the GD classification were aware of the options. Lastly, concerning awareness of Gamblers' Anonymous meetings, 29.7% of those in the No Criteria classification, 38.4% of those in the At-Risk classification, and 49.1% of those in the GD classification were aware of these meetings. Overall, those in the At-Risk classification had the highest awareness of helplines, while those in the GD classification had the highest awareness of Gamblers' Anonymous meetings. Those in the No Criteria and GD classifications had similar levels of awareness of Gambling Treatment Options.

Do those in the GD Classification Utilize the Helpline in Oklahoma more than those in the No Criteria or At-Risk Classifications?

Table 5.D presents the proportion of those who are aware of the helpline and whether or not they call across problem gambling classes. Among those in the No Criteria classification, 95.7% did not call the helpline, while 4.3% did. For At-Risk, 74.7% did not call the helpline, and 25.3% did. Lastly, for GD, 64.1% did not call the helpline, while 35.9% did. The data shows that those in the No Criteria Classification had the highest proportion who did not call the helpline, while those in the GD classification had the highest proportion who called the helpline. Those in the At-Risk classification fell in between, with about one-quarter of them having called the helpline.

Summary

In conclusion, the data underscores the importance of understanding the diverse needs of those who gamble in Oklahoma when it comes to GD resources. It is evident that awareness and utilization of these resources vary significantly across different demographic groups and problem gambling classifications. This information can be used to guide targeted interventions and education campaigns to ensure that all individuals, regardless of their background or gambling habits, have access to the support they need. By enhancing the reach and impact of these resources, Oklahoma can better address problem gambling and foster a more responsible gaming environment for its citizens.

Section 6 - Summary and Recommendations

Over the past decade, the U.S. gambling industry has seen major shifts, including the legalization of sports betting, increased partnerships with professional sports leagues, and a move towards online platforms. Mobile devices have become the go-to for individuals who gamble, providing expanded payment and gameplay options. However, these developments have resulted in a surge in calls to compulsive gambling hotlines, highlighting the need for enhanced regulation. Further, greater promotion of safer gambling practices, such as setting a budget and stopping when upset, need to be widely promoted to mitigate risks. Expanded self-exclusion policies, which allow individuals who gamble to voluntarily ban themselves from certain gambling activities, should also be pursued for wider implementation within a more systematic network. The present findings should help to stimulate discussions surrounding these issues.

Specific findings from the present prevalence study of 4,035 Oklahoman adults revealed that 57.9\% gambled in the past year. The prevalence of gambling disorder (GD) has alarmingly doubled since 2016 to 6.3%, with a further 23.5% at risk, indicating nearly a third of Oklahomans meet at least one GD criterion. This indicates that within Oklahoma, around 200,000 are probable for GD, and 720,00 are at risk for GD. Collectively, this suggests that nearly 1 million Oklahoma adults are either AtRisk or GD individuals.

GD rates are notably higher among individuals engaged in daily fantasy sports, racetrack betting, slot machines, and those endorsing maladaptive beliefs. The severity of GD is underscored by data showing 18.4% of those affected have contemplated suicide, and 23.2% have attempted suicide due to gambling. Finally, despite the existence of a helpline, awareness, and usage of treatment resources are strikingly low. This signals an urgent need for comprehensive interventions to support individuals who gamble legally. As the gambling industry continues its expansion, proactive measures to address these pressing issues are crucial. Possible examples of proactive measures are presented below.

Raise Public Awareness: Given the increase in gambling and GD prevalence, it is essential to elevate public awareness about the risks and implications of gambling. This could include comprehensive media campaigns and community education programs. These efforts should also aim to increase awareness of the available helpline through concerted promotion in gambling venues, in media, and online. Encourage its use, especially among high-risk groups, by making it easier and less stigmatizing to reach out for help.

Gambling Training with Enhanced Suicide Prevention Response: Increase training for professionals who are likely to come into contact with individuals at risk of GD, such as social workers, healthcare providers, and teachers. These individuals can then provide early intervention, information, and referrals to appropriate services. Additionally, given the significant link between GD and suicidal ideation/attempts, suicide prevention programs must be integrated into all gambling treatment strategies.

Increase Awareness of and Access to Treatment: All individuals who gamble should be aware of treatment options, and efforts should be made to decrease the obstacles to accessing these treatment options, which largely include costs and location.

Targeted Prevention Campaigns: Development of prevention campaigns that target activities with the highest GD rates, such as daily fantasy sports, racetrack betting, and slot machines.
Prevention campaigns should also focus on weakening maladaptive beliefs surrounding gambling.
Legislation and Regulation: Legislators play an important role in keeping gambling a safe recreational activity by enacting reasonable regulations on the industry and ensuring that an appropriate amount of tax revenue is earmarked for GD prevention and intervention.

Research: A strong culture of gambling research is essential to keep those who gamble safe. Research is needed to not only conduct prevalence studies every 3 to 5 years but also assess the effectiveness of awareness campaigns, treatment approaches, and new policies. And the best research includes many stakeholders united by a common goal.

In conclusion, the escalating rates of gambling and GD in Oklahoma underscore the urgent need for a comprehensive, multi-pronged response that includes raising public awareness, enhancing professional training with a focus on suicide prevention, and increasing awareness of and access to treatment. The development of targeted prevention campaigns aimed at activities with high GD rates and the dismantling of maladaptive beliefs surrounding gambling are also critical steps. Furthermore, legislators should continue to ensure that the gambling industry remains safe through thoughtful regulations, with adequate resources allocated for GD prevention and intervention programs from tax revenues. Lastly, it is crucial to foster a robust culture of gambling research that involves all relevant stakeholders and tracks the evolution and effectiveness of strategies and policies. This report provides the foundational knowledge and insights needed to make this response effective. It is our hope that these findings will stimulate necessary discussions and pave the way for significant changes that will protect individuals who gamble and enhance the safety and enjoyment of this pastime for all Oklahomans.

Appendix: Methods Use by Elite Research, LLC.

Elite Research, LLC (ER) recommended the use of online survey methods, as this approach is the most costeffective, efficient, and feasible method to assess the prevalence of gambling participation and GD within Oklahoma. There are numerous advantages to online data collection methods, as highlighted in the literature. First, online data collection often reaches a broader audience compared to traditional methods. Second, online data collection can increase response rates and potentially higher data quality. Third, researchers have also found that the enhanced anonymity offered by online survey collection may result in more honest responses, as opposed to face-to-face or phone interviews, where participants might respond in a socially desirable way due to concerns about being judged. The demographic characteristics of the collected data were regularly monitored, and announcements or reminders were customized and targeted to specific demographic groups if additional data were needed. Note that participants request paper survey or to complete the survey via a phone interview. Very few participants completed the survey in this way.

Survey Development

The survey used in this study is based on the Problem and Pathological Gambling Measure (PPGM). Findings from a recent study published by Williams \& Volberg (2013) suggest when considering an instrument intended to measure gambling prevalence among a population, the PPGM outperforms other highly utilized gambling measures such as the SOGS (South Oaks Gambling Screen), CPGI (Canadian Problem Gambling Index), and various other operationalizations of the DSM-IV. ${ }^{4}$ In order to be able to score the PPGM to the newly released DSM-5, Williams \& Volberg provided in direct correspondence (October 25, 2014) the analogous DSM-IV and DSM-5 questions. Given this, the PPGM was used as the backbone for the instrument and supplemented with additional questions from other instruments, including the PPGM and a 2013 lowa-based gambling study.

Demographic and recreation questions, along with several questions related to forms of abuse, knowledge of gambling help centers, and the inclusion of social 'online' gaming, were included to broaden the analysis possibilities. Finally, a 4-item Brief Social Desirability Scale (BSDS) was included in the instrument to assess the truthfulness of participant responses. The BSDS is valid, reliable, and has the advantages of brevity and practicality. The BSDS is preferred in many test situations where the administration time is limited or subjects are unable to tolerate lengthy questionnaires, and the related drop in reliability remains tolerable (Strahan \& Gerbasi, 1972). ${ }^{5}$ While researchers have used a number of different cutoffs to exclude people with a high tendency towards social desirability from analysis, the present study opted for excluding only those who responded affirmatively to all four items.

Sample Recruitment

[^2]In order to collect a minimum of 5,000 respondents, ER used their internal contact lists, purchased statewide contact lists, as well as a partner panel firm, and advertised on social media (Facebook and Instagram). Respondents were invited to enter a drawing for one of $200 \$ 50$ gift cards to Amazon or the major retailer of their choice. The average completion time was 12 minutes. ER created and tested the online survey and hosted it using their survey platform, PsychData.

Past prevalence studies have focused on collection using an addressed-based sampling telephone survey. With the increase in the population with wireless-only service, new collection techniques must be considered to reach a diverse and generalizable sample. In addition, there is an increase in people younger than 35 years heavily involved in online social media, thus an increasing need to include and test collection through online surveys and social media advertisement. Research, including online panelists, suggests that an increased rate of GD may be evident.

There were four forms of participant recruitment; 1) an address-based online survey with SMS text, email, or postal card with a QR code link, 2) a CATI phone interview, 3) partner panel participants, and 4) social media advertising. Statistical comparisons were made between participants from these four collection methods.

Address-Based Sampling. Participants were randomly selected by postal code and then invited by SMS text, email, telephone, or mail advertisement to participate in an online survey, paper survey mailed to them with a prepaid return envelope, or to complete a phone interview. The primary phone voicemail instructed interested participants to either complete the survey online at www.eliteresearch.com/srs or to leave their name and address for a paper survey or their name and phone number to be scheduled an interview during a time convenient to them. The list of 500,000 potential participants has been purchased from Exact Data and Dynata. These potential participants are not members of the online panel sample (described below).

Partnering Panel Collection. Several measures will be taken to check the validity of the data. TrueSample brings the same real-time technologies that help prevent credit card fraud and identity theft to the world of online research, enabling researchers to eliminate duplicate, fraudulent, or unengaged respondents from panel databases to ensure that panel respondents are whom they represent themselves to be (i.e., age, gender).

Panel participants were provided from Dynata, formally Survey Sampling International, a reputable panelist company with more than 38 years of experience. Dynata, founded in 1977, was the first company to make random samples available to researchers and invented the random sampling telephone methodologies, which are still considered the gold standard today. Dynata has offered an online sample for over 15 years. Dynata's survey and sampling processes have been successfully audited every year since 1998 by Ernst \& Young and follow ESOMAR's Guideline for Online Research. The audits are performed as part of the annual Media Ratings Council audit of syndicated rating data produced by Arbitron Inc. and Scarborough Research.

Dynata improves the quality and representative nature of its online sample by incorporating participants from online communities, social networks, and websites of all types. Dynata's sample recruitment is different from the simple "river" approach: participants are invited via banners, invitations, and messaging of all types but then go through rigorous quality controls before being included in any sample. Dynata's recruitment practice
is to include a multitude of diverse sources to minimize bias. Quality control innovations from Dynata follow the TrueSample certification, including:

- 2-Factor Authentication: requires two pieces of information to confirm identity.
- Pattern Recognition: Using a variety of software, SSI monitors patterns across survey participants over time in order to identify fraudulent respondents.
- Monitoring Inattention: Speeding, straight-lining, not providing thoughtful answers to open ends, and not reading questions fully are all behaviors that can impact data quality.
- TrustScore: a score used to evaluate the level of trust SSI has in a respondent. As the panelist behaves across surveys, they can either earn or lose trust points. Any participants with negative TrustScores are carefully monitored and potentially blacklisted.

For inclusion in the survey, panel participants must have been 18 years or older and a current resident of the state of Oklahoma.

Social Network Recruitment. To recruit participants from social networking websites such as Facebook, Twitter, etc., we first determined several incentives (examples include drawings for gift cards, iPods, etc., totaling a value of $\$ 4,000$) and created announcements that include the survey web link and incentive information, which were posted online. The survey encourages snowballing, which allows participants to invite other eligible participants to complete the survey.

- Facebook ads were created for desktop newsfeed, mobile newsfeed, audience network, and desktop right column. Paid ads (Cost per click) targeted toward Oklahoma residents aged 18 and over.
- Reddit and Craigslist ads were created and posted with defined targets.

Report Tables

Table 1.A. Validity Checks and Final Sample.

Validity Flag	Oklahoma
Checks performed by Elite Research	
Total Started Survey	5,698
Total Invalid Responses	-120
Age Criteria Not Met	-32
Dropped off page 1	-35
Too Fast	-34
Too Slow	-19
No Variance	-19
Total Responses in Dataset from Elite Research	$\mathbf{5 , 5 7 8}$
Additional Data Checks by Research Team	-323
Incomplete Demographics	-286
Social Desirability 1	-643
Issues Validating Gambling Engagement ${ }^{2}$	-291
Skipping Gambling Disorder Measure	$-1,543$
Total Responses Excluded by Research Team	4,035
Final Sample	

${ }^{1}$ Social desirability was assessed with four Yes / No questions from the Brief Social Desirability Scale: (1) Would you smile at people every time you meet them? (2) Do you always practice what you preach? (3) If you say to people that you will do something, do you always keep your promise no matter how inconvenient it might be? (4) Would you ever lie to people? Participants were excluded if they responded "Yes" to all four questions embedded throughout the survey.

2 This included a number of checks, such as excluding those who did not complete the gambling engagement section and only indicated gambling online but not any specific gambling activity. However, the majority were excluded for initially stating engagement in a specific gambling activity during that past year and declining to engage in that same activity later in the survey.

Table 1.B. Descriptives of the Raw Dataset, Final Dataset, and Weighted Dataset relative to the desired population. Differences between the desired population the Raw Dataset, Final Dataset, and Weighted Dataset that exceed 3\% are highlighted in Yellow.

	DESIRED POPULATION ${ }^{1}$	$\frac{\text { Raw Data }}{N=5,578}$	Final Sample $N=4035$	Final Sample Weighted$N=4035$		
				95\% Cls		
	\%	\%	\%	\%	LL	UL
Gender						
Male	49.54\%	46.07\%	45.35\%	49.49\%	48.0\%	51.0\%
Female	50.46\%	53.23\%	54.65\%	50.51\%	49.0\%	52.0\%
Missing/Excluded	n/a	0.70\%				
Age Group						
< 25 years	9.53\%	11.22\%	10.71\%	9.49\%	8.6\%	10.4\%
25 to 34 years	18.88\%	19.88\%	20.99\%	18.91\%	17.7\%	20.1\%
35 to 44 years	17.07\%	21.03\%	21.46\%	17.10\%	16.0\%	18.3\%
45 to 54 years	16.02\%	17.05\%	17.05\%	16.01\%	14.9\%	17.2\%
55 to 64 years	17.04\%	15.51\%	15.32\%	17.00\%	15.9\%	18.2\%
65 to 74 years	12.48\%	11.55\%	10.98\%	12.49\%	11.5\%	13.5\%
75 to 84 years	6.55\%	3.44\%	3.25\%	6.59\%	5.9\%	7.4\%
85 years and over	2.41\%	0.32\%	0.25\%	2.40\%	2.0\%	2.9\%
Missing/Excluded	n/a	0.00\%				
Ethnicity						
Hispanic or Latino	10.93\%	10.42\%	7.43\%	10.90\%	10.0\%	11.9\%
Not Hispanic or Latino	89.07\%	89.58\%	92.57\%	89.10\%	88.1\%	90.0\%
Missing/Excluded	n/a	0.00\%				
Race						
White	64.90\%	70.40\%	74.87\%	72.84\%	71.4\%	74.2\%
Black or African American	7.14\%	8.09\%	8.72\%	7.98\%	7.2\%	8.8\%
American Indian	7.31\%	6.40\%	6.32\%	8.20\%	7.4\%	9.1\%
Asian	2.17\%	1.15\%	1.14\%	2.48\%	2.0\%	3.0\%
Native Hawaiian or Pacific Islander	0.15\%	0.18\%	0.17\%	0.22\%	0.1\%	0.4\%
Other race	0.17\%	0.66\%	0.67\%	0.22\%	0.1\%	0.4\%
Two or more races	7.23\%	7.85\%	8.10\%	8.08\%	7.3\%	9.0\%
Missing/Excluded	n/a	5.27\%				
County						
Adair County	0.47\%	0.59\%	0.64\%	0.47\%	0.3\%	0.7\%
Alfalfa County	0.14\%	0.04\%	0.05\%	0.14\%	0.1\%	0.3\%
Atoka County	0.35\%	0.22\%	0.17\%	0.35\%	0.2\%	0.6\%
Beaver County	0.12\%	0.34\%	0.37\%	0.12\%	0.0\%	0.3\%
Beckham County	0.56\%	0.45\%	0.37\%	0.56\%	0.4\%	0.8\%
Blaine County	0.20\%	0.38\%	0.37\%	0.20\%	0.1\%	0.4\%
Bryan County	1.17\%	1.47\%	1.34\%	1.16\%	0.9\%	1.5\%
Caddo County	0.66\%	0.39\%	0.35\%	0.66\%	0.5\%	1.0\%
Canadian County	4.05\%	4.75\%	4.91\%	4.07\%	3.5\%	4.7\%
Carter County	1.20\%	0.81\%	0.84\%	1.20\%	0.9\%	1.6\%
Cherokee County	1.18\%	1.33\%	1.49\%	1.17\%	0.9\%	1.5\%
Choctaw County	0.35\%	0.34\%	0.35\%	0.35\%	0.2\%	0.6\%
Cimarron County	0.06\%	0.04\%	0.02\%	0.05\%	0.0\%	0.2\%
Cleveland County	7.59\%	7.15\%	7.21\%	7.61\%	6.8\%	8.5\%

Coal County	0.13\%	0.16\%	0.20\%	0.12\%	0.0\%	0.3\%
Comanche County	3.01\%	2.78\%	2.80\%	3.02\%	2.5\%	3.6\%
Cotton County	0.13\%	0.22\%	0.27\%	0.13\%	0.0\%	0.3\%
Craig County	0.35\%	0.22\%	0.22\%	0.34\%	0.2\%	0.6\%
Creek County	1.80\%	1.94\%	1.66\%	1.81\%	1.4\%	2.3\%
Custer County	0.72\%	0.45\%	0.47\%	0.71\%	0.5\%	1.0\%
Delaware County	1.00\%	0.86\%	0.84\%	1.00\%	0.7\%	1.3\%
Dewey County	0.11\%	0.02\%	0.00\%	0.00\%		
Ellis County	0.09\%	0.07\%	0.10\%	0.09\%	0.0\%	0.2\%
Garfield County	1.58\%	1.43\%	1.41\%	1.59\%	1.2\%	2.0\%
Garvin County	0.63\%	0.50\%	0.47\%	0.63\%	0.4\%	0.9\%
Grady County	1.38\%	1.74\%	1.96\%	1.39\%	1.1\%	1.8\%
Grant County	0.10\%	0.14\%	0.17\%	0.10\%	0.0\%	0.2\%
Greer County	0.13\%	0.27\%	0.27\%	0.13\%	0.0\%	0.3\%
Harmon County	0.06\%	0.04\%	0.02\%	0.06\%	0.0\%	0.2\%
Harper County	0.08\%	0.02\%	0.00\%	0.00\%		
Haskell County	0.28\%	0.20\%	0.25\%	0.28\%	0.1\%	0.5\%
Hughes County	0.33\%	0.32\%	0.35\%	0.33\%	0.2\%	0.5\%
Jackson County	0.61\%	0.38\%	0.37\%	0.61\%	0.4\%	0.9\%
Jefferson County	0.13\%	0.04\%	0.02\%	0.12\%	0.0\%	0.3\%
Johnston County	0.25\%	0.07\%	0.07\%	0.25\%	0.1\%	0.4\%
Kay County	1.08\%	1.22\%	1.34\%	1.07\%	0.8\%	1.4\%
Kingfisher County	0.38\%	0.34\%	0.30\%	0.38\%	0.2\%	0.6\%
Kiowa County	0.21\%	0.29\%	0.22\%	0.20\%	0.1\%	0.4\%
Latimer County	0.23\%	0.25\%	0.25\%	0.22\%	0.1\%	0.4\%
Le Flore County	1.19\%	1.15\%	1.21\%	1.19\%	0.9\%	1.6\%
Lincoln County	0.83\%	0.70\%	0.72\%	0.83\%	0.6\%	1.2\%
Logan County	1.28\%	1.22\%	1.24\%	1.27\%	1.0\%	1.6\%
Love County	0.26\%	0.11\%	0.12\%	0.25\%	0.1\%	0.4\%
Major County	0.20\%	0.29\%	0.37\%	0.19\%	0.1\%	0.4\%
Marshall County	0.38\%	0.23\%	0.22\%	0.38\%	0.2\%	0.6\%
Mayes County	0.96\%	0.65\%	0.59\%	0.96\%	0.7\%	1.3\%
McClain County	1.08\%	1.02\%	1.14\%	1.07\%	0.8\%	1.4\%
McCurtain County	0.76\%	0.52\%	0.52\%	0.75\%	0.5\%	1.0\%
McIntosh County	0.47\%	0.63\%	0.64\%	0.46\%	0.3\%	0.7\%
Murray County	0.35\%	0.32\%	0.32\%	0.34\%	0.2\%	0.6\%
Muskogee County	1.63\%	1.52\%	1.46\%	1.64\%	1.3\%	2.1\%
Noble County	0.27\%	0.32\%	0.37\%	0.26\%	0.1\%	0.5\%
Nowata County	0.23\%	0.41\%	0.52\%	0.22\%	0.1\%	0.4\%
Okfuskee County	0.28\%	0.22\%	0.17\%	0.27\%	0.1\%	0.5\%
Oklahoma County	20.29\%	21.33\%	20.27\%	20.37\%	19.2\%	21.6\%
Okmulgee County	0.90\%	0.84\%	0.82\%	0.90\%	0.6\%	1.2\%
Osage County	1.14\%	1.29\%	1.16\%	1.13\%	0.8\%	1.5\%
Ottawa County	0.75\%	1.34\%	1.34\%	0.74\%	0.5\%	1.0\%
Pawnee County	0.38\%	0.23\%	0.22\%	0.38\%	0.2\%	0.6\%
Payne County	2.06\%	1.76\%	2.01\%	2.07\%	1.7\%	2.5\%
Pittsburg County	1.08\%	0.61\%	0.62\%	1.08\%	0.8\%	1.4\%
Pontotoc County	0.95\%	0.88\%	0.97\%	0.95\%	0.7\%	1.3\%

Pottawatomie County	$\mathbf{1 . 8 3 \%}$	2.17%	2.40%	1.83%	1.5%	2.3%
Pushmataha County	0.27%	0.11%	0.12%	0.26%	0.1%	0.5%
Roger Mills County	$\mathbf{0 . 0 9 \%}$	0.09%	0.07%	0.08%	0.0%	0.2%
Rogers County	2.42%	1.99%	1.93%	2.43%	2.0%	2.9%
Seminole County	0.58%	0.56%	0.59%	0.57%	0.4%	0.8%
Sequoyah County	0.97%	1.11%	1.02%	0.96%	0.7%	1.3%
Stephens County	1.06%	0.99%	1.09%	1.05%	0.8%	1.4%
Texas County	0.54%	0.52%	0.47%	0.53%	0.3%	0.8%
Tillman County	$\mathbf{0 . 1 7 \%}$	0.25%	0.22%	0.16%	0.1%	0.3%
Tulsa County	$\mathbf{1 7 . 0 6 \%}$	17.55%	17.45%	17.11%	16.0%	18.3%
Wagoner County	$\mathbf{2 . 0 6 \%}$	2.21%	2.43%	2.07%	1.7%	2.5%
Washington County	1.32%	1.70%	1.69%	1.31%	1.0%	1.7%
Washita County	0.27%	0.32%	0.32%	0.26%	0.1%	0.5%
Woods County	$\mathbf{0 . 2 1 \%}$	0.25%	0.25%	0.21%	0.1%	0.4%
Woodward County	$\mathbf{0 . 5 1 \%}$	0.36%	0.35%	0.69%	0.5%	1.0%
Missing/Excluded	n/a	0.00%	0.00%		0.3%	0.7%

Note: Highlighted cells indicate a significant difference (i.e., > $\pm 3 \%$) from the desired population.
${ }^{1}$ Desired population proportions were found online via two websites listed below:
(a) https://www.census.gov/data/tables/time-series/demo/popest/2020s-counties-total.html
(b) https://data.census.gov/cedsci/table?q=United\ States\&g=0400000US40\&tid=ACSST5Y2020.S0101

Table 1.C. Supplemental Demographics Excluded from Weighting Procedure.

		95% Cls	
Education Level	LL	UL	
College Graduate	43.8%		
Not College Graduate	56.2%	42.3%	45.3%
Employment Status	54.7%	57.7%	
Employed	55.9%		
Not Employed	44.1%	54.4%	57.5%
Income Level		42.5%	45.6%
Less than \$24,999	25.3%		
\$25,000-\$49,999	29.7%	23.9%	26.7%
\$50,000-\$99,999	27.1%	28.3%	31.2%
\$100,000 or more	17.9%	25.7%	28.5%
Military Service		16.7%	19.1%
No Military Service	89.7%	88.7%	90.6%
Military Service	10.3%	9.4%	11.3%

Table 2.A. Demographic Comparison of Individuals Who Did and Did Not Gamble During the Past Year.

	No Gambling Past Year			Gambling Past Year		
	95\% Cls			95\% Cls		
	\%	LL	UL	\%	LL	UL
Gender						
Male	36.1\%	34.0\%	38.2\%	63.9\%	61.8\%	66.0\%
Female	50.1\%	47.9\%	52.3\%	49.9\%	47.7\%	52.1\%
Age Groups						
Under 25 years	50.1\%	45.1\%	55.1\%	49.9\%	44.9\%	54.9\%
25-34 years	40.6\%	37.1\%	44.0\%	59.4\%	55.9\%	62.8\%
35-44 years	34.6\%	31.0\%	38.1\%	65.4\%	61.9\%	69.0\%
45-54 years	38.6\%	34.8\%	42.3\%	61.4\%	57.5\%	65.0\%
55-64 years	44.2\%	40.5\%	47.9\%	55.8\%	52.1\%	59.5\%
65-74 years	48.6\%	44.3\%	53.0\%	51.4\%	47.0\%	55.7\%
75-84 years	53.3\%	47.4\%	59.3\%	46.7\%	40.7\%	52.6\%
85 years and over	63.8\%	54.1\%	73.0\%	36.2\%	27.0\%	45.9\%
Hispanic, Latino, or Spanish origin						
No - Not of Hispanic, Latino, or Spanish origin	39.0\%	37.4\%	40.6\%	61.0\%**	59.4\%	62.6\%
Yes - Hispanic, Latino, or Spanish origin	76.8\%	72.7\%	80.6\%	23.2\%**	19.4\%	27.3\%
Racial Background						
White / Caucasian	43.1\%	41.3\%	44.9\%	56.9\%	55.1\%	58.7\%
Black or African American	48.2\%	42.7\%	53.6\%	51.8\%	46.4\%	57.3\%
American Indian or Native Alaskan	36.8\%	31.8\%	42.2\%	63.2\%	57.8\%	68.2\%
Asian	50.4\%	40.3\%	59.7\%	49.6\%	39.3\%	58.7\%
Native Hawaiian or Pacific Islander	36.5\%	10.4\%	65.2\%	63.5\%	34.8\%	89.6\%
Other race	48.5\%	17.3\%	74.6\%	51.5\%	25.4\%	82.7\%
Two or more races	42.9\%	37.7\%	48.4\%	57.1\%	51.6\%	62.3\%
Education Level						
No College Degree	42.5\%	40.5\%	44.5\%	57.5\%	55.5\%	59.5\%
College Degree or more	44.0\%	41.8\%	46.4\%	56.0\%	53.6\%	58.2\%
Employment Status						
Employed	52.1\%	49.7\%	54.4\%	47.9\%	45.6\%	50.3\%
Not Employed	36.0\%	34.0\%	38.0\%	64.0\%	62.0\%	66.0\%
Income Level						
Less than \$24,999	46.2\%	43.1\%	49.3\%	53.8\%	50.7\%	56.9\%
\$25,000-\$49,999	44.8\%	41.9\%	47.7\%	55.2\%	52.3\%	58.1\%
\$50,000-\$99,999	39.2\%	36.3\%	42.2\%	60.8\%	57.9\%	63.8\%
\$100,000 or more	36.5\%	33.0\%	40.2\%	63.5\%	59.9\%	67.1\%
Military Service						
No Military Service	42.9\%	41.2\%	44.5\%	57.1\%	55.5\%	58.7\%
Military Service	45.7\%	41.1\%	50.6\%	54.3\%	49.6\%	59.2\%

Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages.

Individuals Who Gambled Last Year

	Non-Players			No Criteria			At-Risk			Gambling Disorder		
	95\% Cls			95\% Cls			95\% Cls			95\% Cls		
	\%	LL	UL									
Gender												
Male	34.7\%	32.6\%	36.8\%	30.3\%	28.3\%	32.3\%	28.2\%	26.3\%	30.2\%	6.8\%	5.8\%	8.0\%
Female	49.4\%	47.2\%	51.6\%	26.0\%	24.1\%	27.9\%	18.8\%	17.2\%	20.6\%	5.7\%	4.8\%	6.8\%
Age Groups												
Under 25 years	49.6\%	44.6\%	54.6\%	17.5\%	13.9\%	21.5\%	27.2\%	22.9\%	31.8\%	5.7\%	3.7\%	8.4\%
25-34 years	39.5\%	36.0\%	43.0\%	24.2\%	21.3\%	27.4\%	29.4\%	26.2\%	32.7\%	6.8\%	5.2\%	8.8\%
35-44 years	33.9\%	30.5\%	37.5\%	24.5\%	21.4\%	27.8\%	30.1\%	26.8\%	33.6\%	11.4\%	9.2\%	14.0\%
45-54 years	37.4\%	33.6\%	41.1\%	33.1\%	29.6\%	36.8\%	22.8\%	19.6\%	26.1\%	6.7\%	4.9\%	8.8\%
55-64 years	42.9\%	39.2\%	46.6\%	32.9\%	29.5\%	36.5\%	19.4\%	16.6\%	22.5\%	4.8\%	3.4\%	6.6\%
65-74 years	46.7\%	42.3\%	51.0\%	33.2\%	29.1\%	37.3\%	16.7\%	13.6\%	20.1\%	3.5\%	2.2\%	5.5\%
75-84 years	53.3\%	47.4\%	59.3\%	28.4\%	23.4\%	34.2\%	15.8\%	11.8\%	20.5\%	2.5\%	1.2\%	5.1\%
85 years and over	63.8\%	54.1\%	73.0\%	30.8\%	22.4\%	40.6\%	5.3\%	2.0\%	10.9\%	0.0\%		
Hispanic, Latino, or Spanish Origin												
No	37.9\%	36.3\%	39.5\%	30.5\%	29.0\%	32.0\%	24.9\%	23.5\%	26.3\%	6.7\%	5.9\%	7.6\%
Yes	76.8\%	72.7\%	80.6\%	8.4\%	6.1\%	11.3\%	12.1\%	9.3\%	15.3\%	2.7\%	1.5\%	4.6\%
Racial Background												
White / Caucasian	41.9\%	40.2\%	43.7\%	29.8\%	28.1\%	31.4\%	22.5\%	21.0\%	24.0\%	5.8\%	5.0\%	6.7\%
Black or African American	47.0\%	41.5\%	52.4\%	17.1\%	13.3\%	21.5\%	28.8\%	24.1\%	34.0\%	7.1\%	4.7\%	10.3\%
American Indian or Native Alaskan	36.8\%	31.8\%	42.2\%	32.5\%	27.5\%	37.5\%	25.0\%	20.6\%	29.9\%	5.7\%	3.6\%	8.6\%
Asian	48.2\%	38.4\%	57.7\%	16.6\%	10.6\%	25.2\%	25.1\%	17.3\%	34.1\%	10.2\%	5.3\%	17.0\%
Native Hawaiian or Pacific Islander	36.5\%	10.4\%	65.2\%	19.1\%	4.9\%	54.4\%	44.4\%	17.3\%	74.6\%	0.0\%		
Other race	48.5\%	17.3\%	74.6\%	19.3\%	4.9\%	54.4\%	32.2\%	10.4\%	65.2\%	0.0\%		
Two or more races	42.6\%	37.4\%	48.1\%	23.4\%	19.0\%	28.1\%	24.9\%	20.4\%	29.7\%	9.1\%	6.4\%	12.7\%
Education Level												
No College Degree	41.6\%	39.6\%	43.6\%	25.6\%	23.9\%	27.5\%	25.3\%	23.6\%	27.1\%	7.4\%	6.4\%	8.5\%
College Degree or more	42.9\%	40.6\%	45.2\%	31.2\%	29.1\%	33.4\%	21.2\%	19.3\%	23.1\%	4.8\%	3.9\%	5.9\%
Employment Status												
Not employed	51.2\%	48.8\%	53.5\%	24.2\%	22.2\%	26.2\%	20.7\%	18.9\%	22.6\%	3.9\%	3.1\%	5.0\%
Employed	35.0\%	33.0\%	37.0\%	30.9\%	29.0\%	32.9\%	25.9\%	24.1\%	27.8\%	8.2\%	7.1\%	9.4\%
Income Level												
Less than \$24,999	45.0\%	41.9\%	48.1\%	23.0\%	20.5\%	25.7\%	24.7\%	22.1\%	27.5\%	7.3\%	5.8\%	9.0\%
\$25,000-\$49,999	43.6\%	40.7\%	46.4\%	24.1\%	21.7\%	26.6\%	25.2\%	22.8\%	27.8\%	7.1\%	5.8\%	8.7\%
\$50,000-\$99,999	38.5\%	35.6\%	41.4\%	36.0\%	33.1\%	38.9\%	20.4\%	18.0\%	22.9\%	5.1\%	3.9\%	6.6\%
\$100,000 or more	35.4\%	31.9\%	39.0\%	32.8\%	29.4\%	36.4\%	25.2\%	22.2\%	28.6\%	6.5\%	4.8\%	8.5\%
Military Service (i.e., Active Duty or Veteran)												
No	41.9\%	40.3\%	43.5\%	27.9\%	26.5\%	29.4\%	24.3\%	22.9\%	25.7\%	5.9\%	5.1\%	6.7\%
Yes	44.4\%	39.9\%	49.4\%	29.5\%	25.3\%	34.0\%	16.2\%	13.0\%	20.1\%	9.8\%	7.3\%	13.0\%

[^3]Table 3.A. Demographic Comparison of Gambling Frequency Categories.

	Low Frequency			Moderate Frequency			High Frequency		
	95\% Cls			95\% Cls			\%	95\% Cls	
	\%	LL	UL	\%	LL	UL		LL	UL
Gender									
Male	37.3\%	34.7\%	40.0\%	32.4\%	29.9\%	35.0\%	30.3\%	27.8\%	32.9\%
Female	33.0\%	30.2\%	36.0\%	34.6\%	31.7\%	37.6\%	32.4\%	29.5\%	35.3\%
Age Groups									
Under 25 years	34.5\%	28.1\%	41.5\%	36.6\%	30.1\%	43.6\%	29.0\%	22.7\%	35.5\%
25-34 years	32.3\%	28.0\%	36.6\%	34.4\%	30.2\%	38.9\%	33.3\%	29.1\%	37.8\%
35-44 years	29.3\%	25.2\%	33.5\%	33.0\%	28.8\%	37.4\%	37.6\%	33.2\%	42.1\%
45-54 years	33.4\%	28.8\%	38.1\%	30.4\%	25.9\%	35.0\%	36.2\%	31.5\%	40.9\%
55-64 years	46.0\%	41.0\%	51.0\%	30.1\%	25.6\%	34.8\%	23.9\%	19.9\%	28.5\%
65-74 years	35.9\%	30.2\%	41.9\%	35.3\%	29.5\%	41.1\%	28.8\%	23.7\%	34.7\%
75-84 years	45.2\%	36.6\%	53.9\%	34.7\%	26.7\%	43.3\%	20.1\%	13.8\%	27.9\%
85 years and over	27.9\%	15.7\%	44.8\%	57.3\%	40.7\%	72.4\%	14.8\%	5.7\%	28.5\%
Hispanic, Latino, or Spanish Origin									
No	35.6\%	33.6\%	37.7\%	33.4\%	31.4\%	35.3\%	31.0\%	29.1\%	32.9\%
Yes	30.4\%	22.1\%	39.8\%	33.6\%	24.8\%	42.8\%	36.0\%	27.4\%	45.9\%
Racial Background									
White / Caucasian	36.4\%	34.1\%	38.8\%	32.7\%	30.5\%	35.0\%	30.8\%	28.7\%	33.1\%
Black or African American	36.3\%	28.9\%	43.4\%	30.8\%	23.9\%	37.8\%	32.9\%	26.1\%	40.3\%
American Indian or Native Alaskan	33.1\%	26.9\%	39.6\%	38.7\%	32.3\%	45.5\%	28.1\%	22.5\%	34.6\%
Asian	16.7\%	8.0\%	28.5\%	41.0\%	27.9\%	54.8\%	42.3\%	29.7\%	56.8\%
Native Hawaiian or Pacific Islander	18.2\%	1.9\%	55.8\%	69.9\%	28.6\%	92.3\%	11.8\%	1.9\%	55.8\%
Other race	33.3\%	9.4\%	79.1\%	59.1\%	20.9\%	90.6\%	7.6\%	0.0\%	37.9\%
Two or more races	33.5\%	26.9\%	40.3\%	31.6\%	25.4\%	38.7\%	34.9\%	28.4\%	42.0\%
Education Level									
No College Degree	33.3\%	30.8\%	35.9\%	34.5\%	32.0\%	37.1\%	32.2\%	29.7\%	34.8\%
College Degree or more	38.0\%	35.1\%	41.1\%	31.9\%	29.1\%	34.9\%	30.0\%	27.3\%	33.0\%
Employment Status									
Not employed	36.9\%	33.7\%	40.2\%	36.7\%	33.5\%	40.0\%	26.5\%	23.6\%	29.6\%
Employed	34.5\%	32.1\%	37.0\%	31.5\%	29.1\%	33.9\%	34.0\%	31.6\%	36.5\%
Income Level									
Less than \$24,999	29.4\%	25.7\%	33.5\%	41.1\%	36.9\%	45.3\%	29.5\%	25.7\%	33.5\%
\$25,000-\$49,999	33.7\%	30.1\%	37.4\%	33.9\%	30.3\%	37.6\%	32.4\%	28.9\%	36.2\%
\$50,000-\$99,999	36.9\%	33.1\%	40.6\%	32.9\%	29.3\%	36.6\%	30.2\%	26.7\%	33.8\%
\$100,000 or more	41.3\%	36.6\%	45.8\%	26.0\%	22.0\%	30.2\%	32.7\%	28.5\%	37.2\%
Military Service (i.e., Active Duty or Veteran)									
No	35.4\%	33.4\%	37.5\%	34.0\%	32.0\%	36.1\%	30.6\%	28.6\%	32.6\%
Yes	35.4\%	29.2\%	41.6\%	27.6\%	22.2\%	33.8\%	37.0\%	30.9\%	43.4\%

Table 3.B. Percentage of Individuals Engaging in Specific Gambling Activities across Gambling Frequency Categories.

	Low Frequency			Moderate Frequency			High Frequency		
	95\% Cls			95\% Cls				95\% Cls	
	\%	LL	UL	\%	LL	UL	\%	LL	UL
Lottery or Scratch Tickets	25.1\%	22.8\%	27.5\%	36.4\%	33.8\%	39.0\%	38.5\%	35.8\%	41.2\%
Bingo or Keno	19.5\%	16.1\%	23.5\%	32.3\%	28.2\%	36.9\%	48.1\%	43.6\%	52.8\%
Slot or Video Card Machine	27.9\%	25.6\%	30.5\%	34.8\%	32.2\%	37.4\%	37.3\%	34.8\%	39.9\%
Casino Table or Dice Games	22.9\%	19.2\%	26.9\%	28.8\%	24.7\%	33.0\%	48.2\%	43.6\%	52.7\%
Raffles, Office Pools, Skill Bets, or Cards with Friends	31.5\%	28.4\%	34.7\%	28.5\%	25.5\%	31.7\%	40.0\%	36.6\%	43.3\%
League (or Season) Fantasy	22.4\%	16.2\%	29.3\%	27.9\%	21.4\%	35.6\%	49.7\%	41.8\%	57.5\%
Daily Fantasy Sports	4.9\%	1.9\%	12.5\%	19.6\%	11.4\%	29.3\%	75.4\%	64.6\%	84.1\%
Sports (exclusive of League Fantasy and Daily Fantasy Sports)	20.1\%	13.7\%	28.9\%	28.9\%	21.0\%	38.0\%	51.0\%	42.0\%	60.7\%
Racetracks	26.2\%	18.6\%	34.4\%	33.5\%	25.5\%	42.5\%	40.3\%	31.9\%	49.6\%
Stock Trading	15.8\%	11.0\%	22.1\%	32.2\%	25.1\%	39.3\%	52.0\%	44.5\%	59.7\%

Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages. Percentages only reflect those who gambled during the last year.

Table 3.C. Comparison of Gambling Motivations across Gambling Frequency Categories.

	Low Frequency				Moderate Frequency				High Frequency			
		95\% Cls					95\% Cls		M	SD	95\% Cls	
	M	SD	LL	UL	M	SD	LL	UL			LL	UL
Socialization	2.89	1.66	2.77	3.01	2.60	1.49	2.49	2.71	2.85	1.59	2.73	2.97
Excitement	2.86	1.40	2.76	2.96	3.07	1.47	2.96	3.18	3.40	1.51	3.29	3.52
Financial	3.23	1.69	3.10	3.35	3.53	1.60	3.42	3.65	3.87	1.70	3.74	4.00
Charitable Reasons	2.87	1.64	2.76	2.99	2.62	1.48	2.51	2.73	2.72	1.57	2.60	2.84
Entertainment	4.12	1.52	4.01	4.23	4.01	1.54	3.90	4.12	4.06	1.59	3.94	4.18
Coping or Escape	1.97	1.32	1.87	2.06	2.31	1.46	2.21	2.42	2.78	1.64	2.65	2.90

Note: Each gambling motivation is rated on a 1 to 6 scale, with 6 indicating a stronger motivation for gambling.

Table 4.A. Nine Criteria of Gambling Disorder and Proportion of Individuals Who Gamble that Endorsed each Criterion.

Criterion	Question (Yes / No)		95\% CI	
		\%	LL	UL
1	... would you say you have been preoccupied with gambling?	19.2\%	17.6\%	20.9\%
2	... did you find you needed to gamble with larger and larger amounts of money to	7.2\%	6.2\%	8.3\%
3 a	... have you made any attempts to either cut down, control or stop your gambling	24.9\%	23.1\%	26.7\%
3b	... if you did, were you (un)successful in these attempts?	36.4\%	32.5\%	40.4\%
3	Meeting Criteria 3 (i.e., endorsing DSM3a and DSM3b)	9.0\%	7.9\%	10.3\%
4	... when you were not gambling did you often experience irritability, restless	9.9\%	8.7\%	11.2\%
5	... have you often gambled to escape bad moods or other troubles?	12.0\%	10.7\%	13.4\%
6	... have you often gone back to try and win back the money you lost?	16.4\%	15.0\%	18.0\%
7	... have you often lied to people about your gambling or often concealed the extent of your gambling from other people?	9.0\%	7.9\%	10.2\%
8a	... has your involvement in gambling caused serious problems in your relationship with your spouse/partner, or important friends or family?	32.7\%	30.7\%	34.6\%
8b	... has your involvement in gambling caused significant work or school problems for you or someone close to you?	5.0\%	4.2\%	6.0\%
8 C	... has your involvement in gambling caused you to miss a significant amount of time off work or school?	7.3\%	6.3\%	8.4\%
8	Meeting Criteria 8 (i.e., endorsing DSM8a, DSM8b, or DSM8c)	35.7\%	33.7\%	37.7\%
9 a	... has your involvement in gambling caused you either to borrow a significant amount of money or sell some of your possessions?	6.2\%	5.3\%	7.3\%
9 b	... has your involvement in gambling caused significant financial concerns for you or someone close to you?	10.0\%	8.8\%	11.3\%
9	Meeting Criteria 9 (ie., endorsing DSM9a or DSM9b)	11.8\%	10.5\%	13.1\%

Note: Each question had the prompt, During the past year...

Table 4.B. Engagement in Specific Gambling Activities across Gambling Disorder Classes.

		No Criteria			At-Risk			Gambling Disorder			
		\%	95\% Cls		\%	95\% Cls		\%	95\% Cls		
		LL	UL	LL		UL	LL		UL		
Lottery or Scratch Tickets	No		48.7\%	45.6\%	51.7\%	42.0\%	39.0\%	45.0\%	9.3\%	7.6\%	11.2\%
	Yes	48.4\%	45.7\%	51.1\%	39.3\%	36.6\%	41.9\%	12.3\%	10.6\%	14.2\%	
Bingo or Keno	No	49.9\%	47.6\%	52.2\%	40.0\%	37.8\%	42.2\%	10.1\%	8.8\%	11.5\%	
	Yes	42.8\%	38.2\%	47.4\%	42.5\%	38.0\%	47.2\%	14.7\%	11.6\%	18.2\%	
Slot or Video Card Machine	No	61.4\%	58.3\%	64.4\%	34.9\%	32.0\%	38.0\%	3.7\%	2.7\%	5.1\%	
	Yes	39.2\%	36.6\%	41.8\%	44.5\%	41.9\%	47.2\%	16.3\%	14.3\%	18.3\%	
Casino Table or Dice Games	No	49.4\%	47.1\%	51.7\%	40.6\%	38.4\%	42.9\%	10.0\%	8.6\%	11.4\%	
	Yes	45.1\%	40.6\%	49.7\%	39.8\%	35.4\%	44.3\%	15.1\%	12.1\%	18.6\%	
Raffles, Office Pools, Skill Bets, or Cards with Friends	No	50.2\%	47.7\%	52.7\%	38.1\%	35.6\%	40.6\%	11.7\%	10.2\%	13.5\%	
	Yes	45.5\%	42.1\%	48.9\%	44.8\%	41.5\%	48.3\%	9.6\%	7.8\%	11.9\%	
League (or Season) Fantasy	No	49.3\%	47.2\%	51.4\%	40.0\%	37.9\%	42.1\%	10.8\%	9.5\%	12.1\%	
	Yes	38.1\%	30.5\%	45.8\%	47.6\%	39.9\%	55.6\%	14.4\%	9.5\%	20.6\%	
Daily Fantasy Sports	No	49.0\%	46.9\%	51.1\%	40.4\%	38.4\%	42.4\%	10.6\%	9.4\%	12.0\%	
	Yes	34.9\%	24.1\%	45.6\%	42.9\%	31.6\%	53.9\%	22.2\%	13.6\%	32.4\%	
Sports (exclusive of League Fantasy and Daily Fantasy Sports)	No	48.2\%	46.1\%	50.3\%	40.9\%	38.8\%	42.9\%	11.0\%	9.7\%	12.3\%	
	Yes	55.8\%	46.6\%	65.2\%	32.9\%	24.4\%	42.0\%	11.4\%	6.3\%	18.2\%	
Racetracks	No	49.0\%	46.9\%	51.1\%	40.4\%	38.4\%	42.5\%	10.5\%	9.3\%	11.9\%	
	Yes	39.1\%	30.3\%	47.8\%	41.5\%	32.7\%	50.5\%	19.3\%	12.6\%	26.8\%	
Stock Trading	No	49.1\%	47.0\%	51.3\%	40.3\%	38.2\%	42.4\%	10.6\%	9.4\%	12.0\%	
	Yes	40.7\%	33.2\%	48.1\%	43.0\%	35.5\%	50.6\%	16.3\%	11.5\%	22.8\%	

Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages. The interpretation of this table is generally a comparison within each category. For instance, among those who do not play Slot or Video Card Machines, 16.3\% met criteria for gambling disorder, whereas only 3.7% of those who did not play Slot or Video Card Machines met the same threshold.

Table 4.C. Gambling Frequency Categories across Problem Gambling Classes.

	No Criteria				At-Risk			Gambling Disorder			
	95%			Cls		95% Cls			95%		Cls
	\%	LL	UL	UL	LL	UL	\%	LL	UL		
Low Frequency	66.7%	63.5%	69.9%	31.9%	28.8%	35.2%	1.4%	0.7%	2.3%		
Moderate Frequency	42.2%	38.8%	45.7%	46.7%	43.3%	50.3%	11.0%	8.9%	13.3%		
High Frequency	34.6%	31.2%	38.2%	43.5%	39.8%	47.1%	21.9%	19.0%	25.1%		

Table 4.D. Comparison of Gambling Motivations across Gambling Disorder Classes.

	No Criteria				At-Risk				Gambling Disorder			
	95\% Cls				95\% Cls						95\% Cls	
	M	SD	LL	UL	M	SD	LL	UL	M	SD	LL	UL
Socialization	3.17	1.68	3.07	3.27	2.42	1.41	2.33	2.51	2.61	1.45	2.43	2.79
Excitement	3.27	1.44	3.18	3.36	2.79	1.43	2.70	2.88	3.59	1.51	3.41	3.78
Financial	3.75	1.66	3.65	3.85	3.11	1.63	3.00	3.21	4.21	1.60	4.01	4.41
Charitable Reasons	3.17	1.70	3.07	3.28	2.34	1.35	2.26	2.43	2.54	1.39	2.37	2.72
Entertainment	4.52	1.50	4.43	4.62	3.62	1.47	3.53	3.72	3.82	1.49	3.63	4.00
Coping or Escape	2.10	1.42	2.01	2.19	2.27	1.43	2.18	2.36	3.50	1.63	3.30	3.70

Note: Each gambling motivation is rated on a 1 to 6 scale, with 6 indicating a stronger motivation for gambling.

Table 4.E. Percentage of those Endorsing Maladaptive Gambling Beliefs across Gambling Disorder Classes

	No Criteria			At-Risk			Gambling Disorder		
	95\% Cls			95\% Cls				95\% Cls	
	\%	LL	UL	\%	LL	UL	\%	LL	UL
No Maladaptive Beliefs	50.7\%	48.4\%	53.1\%	44.0\%	41.7\%	46.3\%	5.3\%	4.3\%	6.4\%
Only Gambler's Fallacy	33.2\%	25.6\%	41.3\%	42.3\%	34.6\%	51.0\%	24.5\%	17.7\%	32.0\%
Only Systems or Strategies Belief	43.1\%	36.9\%	49.3\%	34.1\%	28.1\%	40.0\%	22.7\%	17.8\%	28.3\%
Endorsed Both Maladaptive Beliefs	28.7\%	22.0\%	36.5\%	22.8\%	16.6\%	30.0\%	48.5\%	40.4\%	56.3\%

[^4]Table 4.F. Proportion Reporting Suicidal Thoughts or Attempts due to Gambling across Gambling Disorder Classes.

	Suicidal Thoughts due to Gambling						Attempted Suicide due to Gambling					
	No			Yes			No			Yes		
	95\% Cls			95\% Cls			95\% Cls			95\% Cls		
	\%	LL	UL									
No Criteria	99.7\%	99.3\%	99.9\%	0.3\%	0.1\%	0.7\%	99.6\%	99.1\%	99.9\%	0.4\%	0.1\%	0.9\%
At-Risk	98.4\%	97.5\%	99.1\%	1.6\%	0.9\%	2.5\%	97.5\%	96.3\%	98.3\%	2.5\%	1.7\%	3.7\%
Gambling Disorder	81.6\%	76.7\%	86.2\%	18.4\%	13.8\%	23.3\%	76.8\%	71.2\%	81.6\%	23.2\%	18.4\%	28.8\%

Table 5.A. Demographics of those Aware of Helpline, Gambling Treatment Options, or Gamblers' Anonymous Meetings.

Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages.

Table 5.B. Demographic Comparison of those Who are Aware of Helplines and Have or Have Not Called the Helpline

	Have Not Called Helpline			Have Called Helpline		
	95\% Cls				95\% Cls	
	\%	LL	UL	\%	LL	UL
Gender						
Male	81.5\%	78.8\%	83.9\%	18.5\%	16.0\%	21.1\%
Female	82.5\%	79.5\%	85.2\%	17.5\%	14.8\%	20.5\%
Age Groups						
Under 25 years	72.3\%	64.4\%	79.2\%	27.7\%	20.8\%	35.6\%
25-34 years	77.6\%	72.9\%	82.0\%	22.4\%	18.0\%	27.1\%
35-44 years	80.2\%	75.8\%	84.2\%	19.8\%	15.8\%	24.2\%
45-54 years	85.0\%	80.6\%	88.7\%	15.0\%	11.3\%	19.4\%
55-64 years	86.2\%	82.0\%	89.9\%	13.8\%	10.1\%	18.0\%
65-74 years	85.5\%	79.2\%	90.1\%	14.5\%	9.9\%	20.8\%
75-84 years	89.7\%	82.8\%	95.8\%	10.3\%	5.1\%	18.9\%
85 years and over	0.0\%			0.0\%		
Hispanic, Latino, or Spanish Origin						
No	81.9\%	79.9\%	83.7\%	18.1\%	16.3\%	20.1\%
Yes	83.0\%	72.4\%	91.1\%	17.0\%	8.9\%	27.6\%
Racial Background						
White / Caucasian	81.6\%	79.4\%	83.7\%	18.4\%	16.3\%	20.7\%
Black or African American	83.3\%	76.3\%	89.1\%	16.7\%	10.9\%	23.7\%
American Indian or Native Alaskan	86.7\%	80.2\%	91.6\%	13.3\%	8.4\%	19.8\%
Asian	94.8\%	85.9\%	99.6\%	5.2\%	1.4\%	19.1\%
Native Hawaiian or Pacific Islander	74.9\%	28.4\%	97.2\%	25.1\%	2.8\%	71.6\%
Other race	68.2\%	17.7\%	96.1\%	31.8\%	3.9\%	82.3\%
Two or more races	76.0\%	67.4\%	82.7\%	24.0\%	17.3\%	32.6\%
Education Level						
No College Degree	82.0\%	79.5\%	84.4\%	18.0\%	15.6\%	20.5\%
College Degree or more	81.8\%	78.7\%	84.5\%	18.2\%	15.5\%	21.3\%
Employment Status						
Not employed	84.9\%	81.7\%	87.7\%	15.1\%	12.2\%	18.1\%
Employed	80.3\%	77.8\%	82.6\%	19.7\%	17.5\%	22.3\%
Income Level						
Less than \$24,999	79.7\%	75.4\%	83.8\%	20.3\%	16.2\%	24.6\%
\$25,000-\$49,999	80.8\%	77.1\%	84.1\%	19.2\%	15.9\%	22.9\%
\$50,000-\$99,999	86.9\%	83.2\%	89.9\%	13.1\%	10.1\%	16.8\%
\$100,000 or more	79.2\%	74.8\%	83.3\%	20.8\%	16.7\%	25.2\%
Military Service (i.e., Active Duty or Veteran)						
No	82.8\%	80.8\%	84.6\%	17.2\%	15.4\%	19.2\%
Yes	74.5\%	67.4\%	80.8\%	25.5\%	19.2\%	32.6\%

Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages.

Table 5.C. Proportion of those that are Aware of Helpline, Gambling Treatment Options, or Gamblers' Anonymous Meetings across Gambling Disorder Classes.

	Helplines			Treatment Options			Gamblers' Anonymous Meetings		
	95\% Cls			95\% Cls			95\% Cls		
	\%	LL	UL	\%	LL	UL	\%	LL	UL
No Criteria	61.9\%	59.0\%	64.9\%	33.7\%	30.9\%	36.6\%	29.7\%	27.0\%	32.5\%
At-Risk	83.5\%	81.1\%	85.8\%	15.0\%	12.8\%	17.3\%	38.4\%	35.4\%	41.6\%
Gambling Disorder	70.1\%	64.1\%	75.4\%	33.0\%	27.2\%	38.8\%	49.1\%	42.9\%	55.2\%

Table 5.D. Proportion of Those that are Aware of Helplines and Have or Have Not Called the Helpline across Gambling Disorder Classes.

	Have Not Called Helpline			Have Called Helpline		
	95\% Cls				95\% Cls	
	\%	LL	UL	\%	LL	UL
No Criteria	95.7\%	93.9\%	97.0\%	4.3\%	3.0\%	6.1\%
At-Risk	74.7\%	71.5\%	77.6\%	25.3\%	22.3\%	28.3\%
Gambling Disorder	64.1\%	57.2\%	71.2\%	35.9\%	29.4\%	43.4\%

[^0]: ${ }^{1}$ Illinois Department of Human Services: https://www.dhs.state.il.us/page.aspx?item=144073;
 ${ }^{2}$ Nower, L., Volberg, R.A. \& Caler, K.R. (2017). The Prevalence of Online and Land-Based Gambling in New Jersey. Report to the New Jersey Division of Gaming Enforcement. New Brunswick, NJ: Authors. Retrieved from https://socialwork.rutgers.edu/centers/center-gambling-studies/research-publications

[^1]: ${ }^{3}$ https://eliteresearch.com/

[^2]: ${ }^{4}$ Williams, R.J \& Volberg, R.A. (2014). The classification accuracy of four problem gambling assessment instruments in population research, International Gambling Studies, 14:1, 15-28, DOI: 10.1080/14459795.2013.839731
 ${ }^{5}$ Strahan R. \& Gerbasi, K. C. (1972). Short Homogeneous Versions of the Marlowe-Crowne Social Desirability Scales. Journal of Clinical Psychology, 28, 191-193.

[^3]: Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages.

[^4]: Note: Red font indicates the 95% Cls range is 15% or greater, suggesting caution should be used with interpreting the percentages.

